
Probabilistic Model Checking of Ant-Based
Positionless Swarming

Paul Gainer, Clare Dixon, and Ullrich Hustadt

Department of Computer Science, University of Liverpool
Liverpool, L69 3BX – United Kingdom

P.Gainer, CLDixon, U.Hustadt@liverpool.ac.uk

Abstract. Robot swarms are collections of simple robots cooperating
without centralized control. Control algorithms for swarms are often in-
spired by decentralised problem-solving systems found in nature. In this
paper we conduct a formal analysis of an algorithm inspired by the for-
aging behaviour of ants, where a swarm of flying vehicles searches for a
target at some unknown location. We show how both exhaustive model
checking and statistical model checking can be used to check properties
that would be impossible to ascertain using simulation alone, resulting
in information that would facilitate the logistics of swarm deployment.

1 Introduction

A robot swarm is a multi-robot system comprised of some number of simple, au-
tonomous, homogeneous robots, working together to achieve objectives in some
environment without centralised control [16]. Coordination between members of
the swarm is achieved through self-organisation and local interactions [2]. The
aim of the design of decentralised control algorithms is to produce robot swarms
that are scalable and fault tolerant.

Swarm behaviours are generally analysed through simulation and observa-
tions of real implementations. The formal analysis of swarm behaviours can
complement the design of swarm algorithms by revealing potential problems
that may go unnoticed by empirical analysis [7]. Formal verification is the pro-
cess by which a property expressed in a suitable formalism (usually some form
of temporal logic) is exhaustively checked against every possible run of a system.

Temporal verification has been applied to robot swarms. In [1] deductive
verification was applied to prove properties of the foraging behaviour of a swarm
of robots; algorithmic verification techniques helped to analyse and refine swarm
aggregation in [7]; statistical runtime verification combined with agent-based
simulation was used to determine the likelihood of emergent swarm behaviours
in [10]; an agent-based temporal-epistemic approach is used in [13] to specify and
verify emergence in swarms, and in [12] a probabilistic analysis of population-
based swarm models was conducted. Whilst this work has clearly demonstrated
that formal verification can be used to exhaustively analyse swarm behaviours,
there are still many problems that need to be addressed. Notable issues include

2 Paul Gainer, Clare Dixon, and Ullrich Hustadt

the state space explosion that occurs with naive modelling of swarms, and the
need for a general framework applicable to a range of swarm algorithms.

Designing control mechanisms for swarms is a challenging problem. Individ-
ual robot behaviours must be formulated at the microscopic level and should
result in the emergence of complex desired group behaviours at the macroscopic
level. There are many examples found in nature of decentralised systems that
solve complex problems [3]. A common approach in swarm robotics has been to
develop control algorithms based on abstractions of these natural systems. In
particular, much work has been conducted to develop control algorithms based
on the behaviours of social insects, such as foraging for food [5, 14], cooperative
nest building [18], and efficient distribution of labour [4].

In [9] a swarm of micro air vehicles (MAVs) attempts to form a communi-
cation pathway between multiple ground users in a disaster area. The control
algorithm used by the MAVs is inspired by the stigmergic foraging behaviour of
army ants which lay and maintain pheromone paths from their nest to sources
of food. A model of this behaviour was originally developed in [6], where the
results of running Monte Carlo simulations of ants moving through a discrete
network of points were analysed. These findings were later discussed in detail
in [3].

In this paper we apply probabilistic temporal verification to the scenario pre-
sented in [9]. For its verification we generate parameterised formal models for
the probabilistic model checker Prism, which we use to either exhaustively or
statistically test probabilistic reachability and reward-based properties. While
exhaustive model checking checks a property against all possible runs of the sys-
tem, statistical model checking performs statistical analysis over a subset of the
possible runs of the system. We validate our models by comparing the results of
checking temporal properties in our models to results obtained from simulations
in [9]. We demonstrate how values pertaining to the logistics of deployments
of swarms of MAVs, that would be unobtainable through simulation alone, can
be calculated a priori by exhaustively checking reward-based properties against
every possible execution of our models. This work is an initial step towards the
development of a generic probabilistic verification approach that can be applied
to other swarm algorithms inspired by the pheromone-based foraging behaviour
of social insects.

Section 2 introduces the ant-based swarming scenario described in [9]. In
Section 3 we detail the generation of our parameterised input models for the
probabilistic model checker Prism, and discuss the abstractions used and as-
sumptions made when designing the discrete formal model. The results of check-
ing probabilistic temporal logic properties in our models are given in Section 4.
Concluding remarks and suggestions for further work are given in Section 5.

2 The Ant-Based Swarming Scenario

The scenario to which we apply probabilistic model checking techniques is pre-
sented in [9]. Here, a simulated swarm of positionless fixed-wing Micro Aerial

Probabilistic Model Checking of Ant-Based Positionless Swarming 3

(0, 0)

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

100
m

60◦

Fig. 1. The Y-junction grid illustrating
the ideal positions for MAVs. Each node is
100 m distant from each of its neighbours.

LANDED

EXPLORINGNODE

RETURNING
landing

no
t
la
nd

in
g

launched

reached empty
position

pheromone
depleted

Fig. 2. A finite state machine describing
the behaviour of a MAV.

Vehicles (MAVs) is deployed by a human operator in order to establish a robust
emergency communication network between a target user, situated at some un-
known location, and the base station wherefrom the swarm is launched. Each
MAV is positionless in that it relies solely upon proprioceptive sensors and lo-
cal neighbourhood communication to position itself [17]. The establishment and
maintenance of this communication network is studied in detail in [9], however
in this paper we focus our analysis on the exploration behaviour of the MAVs.

Figure 1 shows a Y-junction grid consisting of possible positions that MAVs
will ideally adopt in their search for the target user, and the paths that connect
them, while Figure 2 shows the finite state machine describing the behaviour of
an individual MAV. A MAV begins in landed state at the base node, denoted
as (0, 0) on the grid. MAVs are launched at regular intervals and are then in
the exploring state. In the exploring state a MAV navigates through the grid,
travelling at a velocity of 10m/s. When a MAV reaches a position in the grid
where there is no other MAV it will change to node state and remain at that
position, acting as a platform upon which other MAVs can “deposit” virtual
pheromone. Upon changing to node state a MAV will initialise its pheromone
levels to some given amount. A MAV in the node state at some position (i, j)
is considered to be an internal node if there is a MAV in the node state at
either of (i+1, j) or (i, j+1). Internal nodes supplement their levels of deposited
pheromone at each time step by some amount. While in the node state each
MAV broadcasts its pheromone level to other MAVs within its communication
range of 100m. When a MAV in the exploring state reaches a position in the grid
where there is already a MAV in the node state, it continues moving outward
and makes a probabilistic choice which branch to take, determined by the levels
of pheromone deposited at the next positions on the left and right branches, as
transmitted by the MAV in the node state.

Pheromone levels dissipate gradually over time and when they are depleted
a MAV in the node state changes to returning state (internal nodes are sup-
plemented with sufficient pheromone to guarantee that they cannot change to

4 Paul Gainer, Clare Dixon, and Ullrich Hustadt

the returning state.) It then navigates back through the grid towards the base
node similarly to a MAV in the exploring state but only moving along positions
occupied by MAVs in the node state. Once it reaches the base node, if a signal
to land is being broadcast by the base node then the MAV will land, otherwise
it will change back to exploring state.

In more detail, the choice between the left and right path from some posi-
tion (i, j) is determined probabilistically according to the amount of deposited
pheromone at (i+1, j) and (i, j+1) for MAVs in exploring state, or (i−1, j) and
(i, j−1) for MAVs in the returning state. Given pheromone levels of φ(i+1,j) and
φ(i,j+1), the probability of a MAV choosing the left or right path is calculated
using (1) to (4), where µ is a constant which determines the attractiveness of
unexplored paths and is set to 0.75 for the simulations in [9]. If there is no
MAV in the node state at (i, j) then φ(i,j) = 0. Equations (3) and (4) are the
calculations of the probabilities of taking the left or right path at (i, j) where
the correction factor cL(i, j) defined in [9] is applied to the original probability
calculation pL(i, j) given in [6]. This correction ensures that positions equidis-
tant from the base node have an equal chance of being eventually reached, given
equal amounts of pheromone on every path.

pL(i, j) =

[
µ+ φ(i+1,j)

]2[
µ+ φ(i+1,j)

]2
+

[
µ+ φ(i,j+1)

]2 (1)

cL(i, j) =
i+ 1

i+ j + 2
(2)

πL(i, j) =
pL(i, j) · cL(i, j)

pL(i, j) · cL(i, j) + (1− pL(i, j)) · (1− cL(i, j))
(3)

πR(i, j) = 1− πL(i, j) (4)

3 Modelling the Scenario

Next we discuss the design and automatic generation of discrete, parameterised
models of the scenario to which we can apply probabilistic analysis.

3.1 The PRISM Model Checker

Models of the scenario were constructed using the probabilistic model checker
Prism [11]. Given a probabilistic model of a system, Prism can be used to
analyse both temporal and probabilistic properties of the input model by ex-
haustively checking some logical requirement against all possible behaviours.
Properties to be checked can be specified using probabilistic temporal logics such
as Probabilistic Computation Tree Logic (PCTL) [8]. PCTL consists of classical
logical operators (∧,∨,¬), temporal operators �φ (at all points in the future φ
holds), ♦φ (at some point in the future φ holds), φUψ (φ holds until ψ holds),
and the probabilistic operator P./γ(φ) where ./∈ {<,≤, >,≥} is a relational
operator and γ is a probability threshold. PCTL can therefore be used to spec-
ify properties such as P≥0.5(♦φ), meaning “φ holds at some future point with
a probability of at least 0.5”. Prism allows properties to be expressed which

Probabilistic Model Checking of Ant-Based Positionless Swarming 5

evaluate to a numerical value, for instance P=?(♦φ), “the probability of φ being
true at some point in the future”, and also supports metric temporal operators
where the property is bound by time, for example ♦≤Tφ, “φ holds at some point
in the future within T units of time”.

3.2 Discretisation

Simulations were conducted in [9] using a time-step of 50ms. Since a MAV travels
at 10m/s, and ideal positions for nodes are 100m distant from their neighbours,
a MAV in the exploring or returning state takes 10 s to move from one position to
the next. In the probabilistic models we construct using Prism we consider one
transition in the model to be equivalent to a time-step of 10 s. In the original
scenario MAVs are launched from the base node by a human operator every
15 ± 7.5 s, giving an interval in seconds of possible durations between launches
of [7.5, 22.5]. By rounding the endpoints of the interval to the nearest 10 (since
one transition in our model is equivalent to 10 s), we determined that a MAV
is launched from the base in our model once every 1 or 2 transitions. This non-
determinism in the model resulted in state spaces too large to verify properties
for, so the model was further simplified so that exactly one MAV was launched
per transition. A comparison of the results obtained from applying probabilistic
model checking to two models differing only by this additional simplification
showed that there were only very minor differences between the results.

When a MAV switches to node state at time t and position (i, j) it initialises
the pheromone level φ(i,j)(t) to φinit. The evolution of the pheromone levels at
some position (i, j) is defined given by the equation

φ(i,j)(t+ 1) = min[φi,j(t)−∆φdec + n ·∆φant +∆φa, φmax] (5)

where φmax is the maximum amount of pheromone that can be deposited at any
node, ∆φdec is the rate at which deposited pheromone dissipates, ∆φant is the
rate at which pheromone is deposited on a MAV in the node state by a MAV
in the exploring state or the returning state, n is the number of MAVs in the
exploring state or the returning state at (i, j), ∆φa = ∆φint if there is some
MAV in the node state at (i+1, j) or (i, j+1), or 0 otherwise, and ∆φint is the
rate at which extra pheromone is deposited on internal nodes.

The simulations conducted in [9] used values φinit = 0.7 and φmax = 1.
The rates at which pheromone was deposited, or dissipated, given in terms of
units per time-step with one time-step corresponding to 50ms, were given as
∆φant = 0.002, ∆φint = 0.001 and ∆φdec = 0.001; in our model we consider one
transition to be equivalent to 10 s and therefore multiply these values by 200 to
get the pheromone deposition/dissipation rates per transition in the model. To
decrease the size of our models we use a range of discrete integer values to model
pheromone levels. Given some Ph ∈ IN, the number of discrete values to be used
to model pheromone levels, we define a mapping τ : [0, φmax] → IN that maps
a pheromone value in [0, φmax] to some integer value such that τ(φ) = [φ · Ph].
In our models we use a value of Ph = 5; pheromone is deposited by MAVs in

6 Paul Gainer, Clare Dixon, and Ullrich Hustadt

the exploring state or the returning state at a rate of τ(200 ·∆φant) = 2 per
transition, internal nodes supplement their own pheromone levels at a rate of
τ(200 ·∆φint) = 1, and pheromone dissipates at a rate of τ(200 ·∆φdec) = 1.

3.3 Abstractions and Assumptions

Modelling each MAV individually would result in intractable models. We there-
fore take advantage of the following abstractions. First, since one transition in
the models is equivalent to the duration of a flight between two adjacent nodes,
and since all MAVs begin at the base node (position (0, 0), see Figure 1), after
each transition we can assume that the location of each MAV is always at some
position (i, j), instead of in-between positions. Second, as demonstrated in [12] a
counting abstraction can also be used when modelling the behaviours of multiple
identical processes. Since all MAVs are behaviourally identical, and their action
decisions depend solely on their immediate state and percepts, when appropriate
we can associate a counter with every position (i, j) that records the number of
MAVs at that location.

In the simulations in [9] if the signal to land has not been given, then MAVs
that have returned to the base node instead resume exploration. Here we con-
strain the number of MAVs that may leave the base node at any moment in
time to a single MAV. This simplification allows us to greatly reduce the size of
the model. Since each MAV is considered to land upon returning, and at most
one MAV is launched each round, we can conclude that at most one exploring
MAV is at any given position at any time. This can be modelled using Boolean
variables to record if an exploring MAV has moved from some position (i, j) to
either of (i+1, j) or (i, j+1).

A strategy is given in [9] to automatically assign altitudes to individual
MAVs, ensuring that MAVs in the exploring or the returning state maintain
an altitude higher than MAVs in the node state. While this strategy did not
prove to be successful in all cases the chance of a collision occurring was suffi-
ciently low (2.6% of 7500 MAVs collided over 500 trials) for us to assume that
altitude differentiation always avoids collisions.

3.4 PrismModels

Each generated Prismmodel can be defined as a set of m modules M1, . . . ,Mm

[15]. Each module Mi is a tuple (Vi, Ii, Ci), where Vi = {v1, . . . , vki} is a set of
local variables over the domain consisting of finitely bound integers and booleans,
Ii is a mapping of variables to initial values, and Ci = {c1, . . . , cni

} is a set of
commands that define the behaviour of the module. With each local variable
v ∈ Vi we associate a variable v′ denoting the state of v in the next moment
of time. The set of all local variables in the model is denoted as V =

⋃m
i=1 Vi.

For a module Mi every command cj ∈ Ci is a pair (g,U) where g is a predicate
over V and U = {(p1, u1), . . . , (pt, ut)} is a set of possible transitions for Mi. For
a pair (pj , uj) ∈ U , uj is an assignment of values to each of the local variables

Probabilistic Model Checking of Ant-Based Positionless Swarming 7

v1, . . . , vki and is of the form
∧ki
a=1(v′a = exa) where exa is an expression in

terms of V and the domain of variables, and pi ∈ R+ is a constant defining the
probability of that update occurring. Since our model is a DTMC it is required
that for every command we have pi ∈ (0, 1] for 1 ≤ i ≤ t, and

∑t
i=1 pi = 1.

The semantics of a Prism model can be defined in terms of a DTMC. A
DTMC is a tuple (S, s̄,P) where S is a set of states, s̄ ∈ S is the initial state,
and P : S × S → [0, 1] is the probability transition matrix. The state space Si
of a module Mi is the set of all valuations of Vi, and the global state space of a
model is the product of the local state spaces of all modules. The local state of
a module Mi is denoted as si, and a global state s ∈ S is a tuple (s1, . . . , sm)
of local states. The initial state s̄ is determined by I. For brevity, we omit the
details of the calculation of P and refer the reader to [15], noting that while
many different parallel compositions of modules can be defined in Prism, in our
model all modules synchronise over all transitions.

3.5 Model Generation

We automate the generation of our models by using the Prism Preprocessor
to construct a parameterised model of the system. Then, given values for the
parameters N ∈ IN, the number of MAVs in the swarm, D ∈ IN, the maximum
distance between the target user and the base node (in hundreds of metres),
and Ph, the number of discrete values used to record pheromone levels, we can
automatically generate a Prism model M. The model is given by

M = {B} ∪ {Ei,j , Ri,j | i, j ∈ 0 . . . D and 0 < i+ j < D}
∪ {Fi,j | i, j ∈ 0 . . . D and i+ j = D},

where B is a module that models the movement of MAVs in exploring state
from the base node, each Ei,j is a module that models the movement of MAVs
in the exploring or node states at (i, j), each Ri,j is a module that models the
movement of MAVs in the returning state at (i, j), and each Fi,j is a module
that models the movement of MAVs in the exploring, node or returning states,
at or beyond (i, j). We now define each module in the model, however due to
space limitations we simply provide an informal description of the behaviour of
each module.

The base module is a tuple B = (VB , IB , CB), where VB = {bc,↖0,0,↗0,0

} and IB = {bc 7→ N,↖0,0 7→ false,↗0,0 7→ false}. The finitely bound integer
variable bc records the number of MAVs at the base node. The boolean variables
↖0,0 and ↗0,0 record the movement of MAVs in the exploring state, and are
true iff in the last moment in time a MAV moved from the base node to (1, 0)
and (0, 1), respectively. Should there be one or more MAVs at the base node
then one will be launched and will move to (1, 0) with probability πL(0, 0), or
to (0, 1) with probability πR(0, 0).

For every Ei,j = {Vi,jE , Ii,jE , Ci,jE } we have Vi,jE = {pi,j , ni,j ,↖i,j ,↗i,j} with

Ii,jE = {pi,j 7→0, ni,j 7→0,↖i,j 7→ false,↗i,j 7→ false}, where pi,j is a finitely bound
integer variable recording the levels of pheromone deposited at (i, j), ni,j is a

8 Paul Gainer, Clare Dixon, and Ullrich Hustadt

boolean variable that is true if there is a MAV in the node state at (i, j), and
↖i,j and ↗i,j are boolean variables which are are true iff a MAV moved from
(i, j) respectively to (i+1, j) or (i, j+1) in the last moment in time. If no MAVs
in the exploring state have moved to (i, j) then in the next moment in time
no MAVs in the exploring state will be moving from (i, j); if ni,j = true then
pheromone updates will be applied, and if pi,j ≤ 0 then in the next moment in
time the MAV will be in the returning state, otherwise the MAV remains in the
node state. If a MAV in the exploring state has moved to (i, j) when ni,j = false
then in the next moment in time ni,j will be true and pi,j will be initialised to
τ(φinit); no MAV in the exploring state will be moving from (i, j) in the next
moment in time. If a MAV in the exploring state has moved to (i, j) when ni,j
= true, then in the next moment in time the exploring MAV will have moved
to (i+1, j) with probability πL(i, j), or to (i, j+1) with probability πR(i, j), and
remains in the exploring state; pheromone updates are applied and if pi,j ≤ 0
then in the next moment in time the MAV in the node state will be in the
returning state, otherwise this MAV remains in the node state.

For every Ri,j = {Vi,jR , Ii,jR , Ci,jR } if i ≥ 0, j > 0 we have a finitely bound

integer variable ↙i,j∈ Vi,jR with Ii,jR (↘i,j) = 0, and if i > 0, j ≥ 0 we have a

finitely bound integer variable ↘i,j∈ Vi,jR with Ii,jR (↘i,j) = 0, which record the
number of MAVs in the returning state that moved from (i, j) respectively to
(i, j−1) and (i−1, j) in the last moment in time. Unlike exploring MAVs, it is
often the case that two or more returning MAVs will simultaneously move to
the same position. Any MAV in the returning state at some location (i, j) will
always move respectively to (i−1, j) or (i, j−1) if i = 0 or j = 0, otherwise it
will move from (i, j) to (i−1, j) with probability πL(i−1, j−1), or to (i, j−1)
with probability πR(i−1, j−1). We define E i,j

k,l to be the event where given k
MAVs in the returning state at (i, j), l MAVs move from (i, j) to (i−1, j) in the
next moment in time, and k − l MAVs move from (i, j) to (i, j−1) in the next
moment in time. Given values for i, j, k and l we can calculate the probability
of E i,j

k,l as

P (E i,j
k,l) =

(
πL(i− 1, j − 1)l · πR(i− 1, j − 1)k−l

)(
k
l

)
,

since if we have k MAVs then we must consider all distinct subsets of size l. If
no MAVs in the returning state have moved to (i, j), and there is no MAV in
the node state whose pheromone levels have depleted, then in the next moment
in time no MAVs in the returning state will be moving to either of (i−1, j) or
(i, j−1). We then consider each case where there are k MAVs at (i, j) where
0 < k ≤ N . In each case calculating P (E i,j

k,l) for l = 0, . . . , k gives a discrete

probability distribution since for any k ∈ IN we have that
∑k
l=0 P (E i,j

k,l) = 1.

For every Fi,j = {Vi,jF , Ii,jF , Ci,jF } we have a finitely bound integer variable

mi,j ∈ Vi,jF with Ii,jF (mi,j) = 0 that records the number of MAVs that are at

or beyond this position and a finitely bound integer variable ri,j ∈ Vi,jF with

Ii,jF (ri,j) = 0 that is used to determine when MAVs should return from (i, j)

Probabilistic Model Checking of Ant-Based Positionless Swarming 9

or beyond. If i ≥ 0, j > 0 we have a finitely bound integer variable ↙i,j∈ Vi,jF
with Ii,jF (↙i,j) = 0 and if i > 0, j ≥ 0 we have a finitely bound integer variable

↘i,j∈ Vi,jF with Ii,jF (↘i,j)=0 which record the number of MAVs in the returning
state that moved from (i, j) respectively to (i, j−1) and (i−1, j) in the last
moment in time. The variable ri,j is an approximation of the average number of
transitions we would expect between a MAV in the exploring state moving to
(i, j) or beyond and the first moment a MAV should return from a position at or
beyond (i, j). If no MAV moves to (i, j) then after each transition the variable
ri,j is decremented by 1. If there are MAVs at (i, j) and ri,j has decreased to 0,
then in the next moment in time mi,j is decremented by 1 and a single MAV
returns to (i−1, j) or (i, j−1) with probability respectively. For final positions
where i= 0, all MAVs returning from (i, j) will move to (i, j−1). Similarly for
final positions where j=0, all MAVs returning from (i, j) will move to (i−1, j).

4 Experiments

To validate our model we applied statistical model checking using the Prism
discrete-event simulator and compared our results to those obtained from the
simulations conducted in [9]. The mean probability of establishing contact with
a user within 30 minutes was calculated over a series of 500 simulations for
varying swarm sizes. Users were located at some randomly determined location
within a 60 degree arc in a known cardinal direction from the base node at a
distance of ≈200-500m. In our model we assumed that a MAV has established
communication with a user if it has moved to a position at most 100m distant
from the user. Since a user can be located up to ≈500m from the base node,
models were generated with D = 5 and Ph = 5 for all models. We define Puser =
{(i, j) | i, j ∈ 0 . . . 5 and 1 < i+j ≤ 5} to be the set of all possible locations
at which a user may be located. For each (i, j) ∈ Puser we used Prism to
calculate the probability of a MAV moving to (i, j) within 30 minutes (equivalent
to 180 transitions in our model) by formally specifying this as a probabilistic
reachability property in PCTL. Since the grid of positions is symmetrical we
only check PCTL properties for a subset of Puser , as shown in Figure 3; the
probability of a MAV moving to some (i, j) is equivalent to the probability of a
MAV moving to (j, i). For each (i, j) we define moved i,j as

moved i,j ≡

 (↖i−1,j ∨ ↗i,j−1) if i, j > 0
↗i,j−1 if i = 0, j > 0
↖i−1,j if i > 0, j = 0

(6)

We then calculate λ, the mean probability over all locations, as

λ =
(∑

(i,j)∈Puser
P=?(♦≤180moved i,j)

)
/ |Puser | (7)

Figure 4 compares the results of calculating λ for values of N ∈ 5, . . . , 20 to
the results presented in [9]. Statistical model checking results were obtained using
500 discrete-event simulation samples with an average confidence interval of ±2%

10 Paul Gainer, Clare Dixon, and Ullrich Hustadt

0.889 0.984

0.659 0.805

0.527 0.575 0.471

0.315 0.132 0.042

0.805

0.042D=5

D=4

D=3

D=2

D=1

Fig. 3. The subset of Puser for which the
PCTL property is checked. Here the re-
sults correspond to checking the property
for N = 5.

5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Swarm size

P
ro

b
a
b

il
it

y

Simulation

Statistical
Model Checking
Model Checking

Fig. 4. The mean probability of finding
the user within 30 minutes over 500 trials
for simulation and 500 samples for statis-
tical model checking.

based on a 99.0% confidence level. Experiments were conducted on a PC with a
2.20GHz Intel Xeon E5-2420 CPU, 196GB RAM, running Scientific Linux 6.6.
There is clearly a strong correlation between both sets of results. For some
swarm sizes, namely for N = 5, 9, 10, 16, there was a more pronounced difference
between the two values. However, some minor discrepancies were expected due
to the relatively low number of simulations/samples used to obtain the results.
Exhaustive model checking results are shown only for N = 5, 6, 7 since the
reachable state space of models for N ≥ 8 was too large to be calculated.

Prism can be used to reason about other measurable aspects of model be-
haviours. Rewards can be associated with individual states, or groups of states,
and properties relating to expected values for these rewards can be checked in
models. Prism also provides the R operator which allows properties to be ex-
pressed such as the reachability reward property R=?(♦φ), “what is the expected
reward for reaching a state where φ is true”. By associating a reward of one with
each state in our models we can test the property R=?(♦mi,j) for every (i, j)
∈ Puser , which calculates the total time expected for the swarm to establish
contact with a user at (i, j) with probability 1. These calculated values could
facilitate the logistics of MAV swarm deployments where guaranteed contact
with a user is required, given a limited number of MAVs. In Figure 5 the four
graphs on the left show the total expected time in hours for a deployment of N
MAVs, depth D, and lateral distance of the target user from the base node, to
establish communication with the target user with a probability 1. This is done
by checking the property R=?(♦moved i,j) for each (i, j) The four graphs on the
right show the probability of establishing communication with the target user
within 30 minutes by a deployment of N MAVs, depth D, and lateral distance
of the target user from the base node. This is done by checking the property

Probabilistic Model Checking of Ant-Based Positionless Swarming 11

0
1

2
3

4
5

6
0

5

10

D

Hours

N=5

0
1

2
3

4
5

6
0

20

40

D

Hours

N=7

0
1

2
3

4
5

6

0

0.5

1

D

Pr

N=5

0
1

2
3

4
5

6

0

0.5

1

D

Pr

N=7

0
1

2
3

4
5

6
0

2

4

D

Hours

N=10

0
1

2
3

4
5

6
0

2

4

D

Hours

N=20

0
1

2
3

4
5

6

0

0.5

1

D

Pr

N=10

0
1

2
3

4
5

6

0

0.5

1

D

Pr

N=20

Fig. 5. Results for checking the properties R=?(♦moved i,j) and P=?(♦≤180moved i,j)
for each (i, j) in the generated models.

P=?(♦≤180moved i,j) for each (i, j). Results where N > 7 were obtained using
statistical methods over 4000 samples.

5 Conclusions and Further Work

We have constructed formal probabilistic models making some simplifying as-
sumptions given in Section 3.3, and clearly shown a close correspondence be-
tween these models and the simulations conducted in the original scenario. We
then used these models to verify both probabilistic and reward-based properties,
where the resultant calculated values could be used to plan the deployment of
a swarm of MAVs where establishing contact with a user must be guaranteed,
or achieved with a probability that exceeds some given threshold. Since battery
life greatly impacts the flight duration of MAVs the a priori calculation of the
total expected flight time, or total expected distance travelled, for the swarm
would ensure that sufficient resources could be made available to ensure that it
achieves its objectives.

A natural extension of this work would be to use the parametric model check-
ing functionality of Prism to investigate more thoroughly how each parameter
affects the results of checking properties in the model and to calculate opti-
mum parameter values that maximise or minimise probabilistic or reward-based
properties. We also aim to further abstract our approach so that the techniques
that we have developed here can be applied to a broader range of swarm algo-
rithms where stigmergic communication is used to coordinate the behaviour of
the swarm.

6 Acknowledgments

The authors would like to thank the Networks Sciences and Technology Initiative
(NeST) of the University of Liverpool for the use of their computing facilities.

12 Paul Gainer, Clare Dixon, and Ullrich Hustadt

The first author would like to acknowledge the funding received from the Sir
Joseph Rotblat Alumni Scholarship.

References

1. Behdenna, A., Dixon, C., Fisher, M.: Deductive verification of simple foraging
robotic behaviours. International Journal of Intelligent Computing and Cybernetics
2(4), 604–643 (2009)

2. Beni, G.: From swarm intelligence to swarm robotics. In: SAB 2004 Revised Se-
lected Papers, LNCS, vol. 3342, pp. 1–9. Springer (2005)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems. Oxford University Press (1999)

4. Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.L.: Adaptive task allo-
cation inspired by a model of division of labor in social insects. In: Proc. BCEC97.
pp. 36–45. World Scientific (1997)

5. Campo, A., Dorigo, M.: Efficient multi-foraging in swarm robotics. In: Proc. ECAL
2007. LNCS, vol. 4648, pp. 696–705. Springer (2007)

6. Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.M.: The blind leading the blind:
modeling chemically mediated army ant raid patterns. Journal of Insect Behavior
2(5), 719–725 (1989)

7. Dixon, C., Winfield, A.F., Fisher, M., Zeng, C.: Towards temporal verification
of swarm robotic systems. Robotics and Autonomous Systems 60(11), 1429–1441
(2012)

8. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

9. Hauert, S., Winkler, L., Zufferey, J.C., Floreano, D.: Ant-based swarming with
positionless micro air vehicles for communication relay. Swarm Intelligence 2(2-4),
167–188 (2008)

10. Herd, B., Miles, S., McBurney, P., Luck, M.: Approximate verification of swarm-
based systems: a vision and preliminary results. In: Proc. 23rd Safety-critical Sys-
tems Symposium. pp. 361–378. SCSC, SCSC (2015)

11. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: Prism: A tool for automatic
verification of probabilistic systems. In: Proc. TACAS 2006, LNCS, vol. 3920, pp.
441–444. Springer (2006)

12. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robotics and Autonomous Systems 60(2), 199–213 (2012)

13. Kouvaros, P., Lomuscio, A.: Verifying emergent properties of swarms. In: Proc.
AAAI 2015. pp. 1083–1089. AAAI Press (2015)

14. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Strategies for energy optimisation
in a swarm of foraging robots. In: SAB 2007 Revised Selected Papers. LNCS, vol.
4433, pp. 14–26. Springer (2007)

15. Parker, D.A.: Implementation of symbolic model checking for probabilistic systems.
Ph.D. thesis, University of Birmingham (2002)

16. Şahin, E., Winfield, A.: Special issue on swarm robotics. Swarm Intelligence 2(2),
69–72 (2008)

17. Støy, K.: Using situated communication in distributed autonomous mobile robotics.
In: Proc. SCAI 2001. pp. 44–52. IOS Press (2001)

18. Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Science 269,
686–686 (1995)

