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Abstract

Although reasoning about what is the case has been the historic focus of logic,
reasoning about what should be done is an equally important capacity for an in-
telligent agent. Reasoning about what to do in a given situation - termed practical
reasoning in the philosophical literature - has important differences from reasoning
about what is the case. The acceptability of an argument for an action turns not
only on what is true in the situation, but also on the values and aspirations of the
agent to whom the argument is directed. There are three distinctive features of
practical reasoning: first, that practical reasoning is situated in a context, directed
towards a particular agent at a particular time; second, that since agents differ in
their aspirations there is no right answer for all agents, and rational disagreement
is always possible; third, that since no agent can specify the relative priority of its
aspirations outside of a particular context, such prioritisation must be a product of
practical reasoning and cannot be used as an input to it. In this paper we present a
framework for practical reasoning which accommodates these three distinctive fea-
tures. We use the notion of argumentation frameworks to capture the first feature.
An extended form of argumentation framework in which values and aspirations can
be represented is used to allow divergent opinions for different audiences, and com-
plexity results relating to the extended framework are presented. We address the
third feature using a formal description of a dialogue from which preferences over
values emerge. Soundness and completeness results for these dialogues are given.
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1 Introduction

Reasoning about what should be done in a particular situation - termed practi-
cal reasoning in the philosophical literature - is carried out through a process of
argumentation. Argumentation is essential because no completely compelling
answer can be given: whereas in matters of belief, we at least should be con-
strained by what is actually the case, in matters of action no such constraints
apply - we can choose what we will attempt to make the case. Even a norm as
universal and deep seated as thou shalt not kill is acknowledged to permit of
exceptions in circumstances of self defence and war. Thus whether arguments
justifying or urging a course of action are acceptable will depend on the aspi-
rations and values of the agent to which they are addressed: the audience for
the argument. The importance of the audience for arguments was recognised
and advocated by Perelman [20].

Arguments in practical reasoning provide presumptive reasons for performing
an action. These presumptive arguments are then subject to a process of chal-
lenge, called critical questioning in [23]. These critical questions may take the
form of other arguments, which can in turn be challenged, or may be answered
by further arguments, resulting in a set of arguments constructed as the de-
bate develops. An extension of Walton’s account of practical reasoning is given
in [2], which proposes an elaborated argument scheme for practical reasoning,
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which incorporates the value promoted by acceptance of the argument, and
identifies all the ways in which it can be challenged. Although most of our
discussion will treat arguments at a very abstract level, where we have need of
a more particular structure for arguments, we will have this account in mind.

In this paper we will propose and explore a framework for the representation
and evaluation of arguments in practical reasoning. Any such framework must
account for some important phenomena associated with such reasoning. We
will review these features in this section, and will structure the development
of our framework in the remainder of this paper around them.

First, as is clear from the brief sketch of practical reasoning above, argu-
ments cannot be considered in isolation. Whether an argument is acceptable
or not depends on whether it can withstand or counter the other arguments
put forward in the debate. Once the relevant arguments have been identi-
fied, whether a given argument is acceptable will depend on its belonging to
a coherent subset of the arguments put forward which is able to defend it-
self against all attackers. We will call such a coherent subset a position. This
notion of the acceptability of an argument deriving from membership of a
defensible position has been explored in AI through the use of argumentation
frameworks [12,4], and our account will be based on a framework of this sort.
Dung’s framework [12] will be recapitulated in section 2, and then extended
as the paper proceeds. The reasoning involved in constructing argumentation
frameworks and identifying positions within them is naturally modelled as
a dialogue between a proponent and a critic. Dialogues for this purpose have
been proposed in [8], [15] and [3], and we will make use of the way of exploring
argument frameworks. Dialogues are discussed in section 5.

A second important feature of practical reasoning is that rational disagree-
ment is possible, the acceptability of an argument depending in part on the
audience to which it is addressed. Within Dung’s framework it is possible for
disagreement to be represented since argumentation frameworks may contain
multiple incompatible defensible positions. The abstract nature of arguments,
however, means that there is no information that can be used to motivate the
choice of one option over another. Searle states the need to recognise that
disagreement in practical reasoning cannot be eliminated as follows [21]:

Assume universally valid and accepted standards of rationality, assume per-
fectly rational agents operating with perfect information, and you will find
that rational disagreement will still occur; because, for example, the ratio-
nal agents are likely to have different and inconsistent values and interests,
each of which may be rationally acceptable.

What distinguishes different audiences are their values and interests, and in
order to relate the positions acceptable to a given audience to the values and
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interests of that audience we need a way of relating arguments to such values
and interests. Hunter [18] makes a proposal in terms of what he calls resonance,
but we will build on Value Based Argumentation Frameworks (VAFs) proposed
in [4], in which every argument is explicitly associated with a value promoted
by its acceptance, and audiences are characterised by the relative ranking they
give to these values. We will describe VAFs in section 3, their properties in
section 4, and discuss the relationship between our proposal and Hunter’s in
section 7.

The above machinery can allow us to explain disagreement in terms of differ-
ences in the rankings of values between different audiences, but it does not
allow us to explain these rankings. This brings us to the third feature of prac-
tical reasoning for which we wish to account - that we cannot assume that
the parties to a debate will come with a clear ranking of values: rather these
rankings appear to emerge during the course of the debate. We may quote
Searle again:

This answer [that we can rank values in advance] while acceptable as far as
it goes [as an ex post explanation], mistakenly implies that the preferences
are given prior to practical reasoning, whereas, it seems to me, they are
typically the product of practical reasoning. And since ordered preferences
are typically products of practical reason, they cannot be treated as its
universal presupposition. [21]

The question of how value orders emerge during debate is explored in sec-
tions 6, in which we define a dialogue process for evaluating the status of
arguments in a VAF, and in which we show how this process can be used to
construct positions. In the course of constructing a position, the ordering of
values will be determined.

Although it is not reasonable to assume that participants in a debate come
with a firm value order, and so we wish to account for the emergence of such
an order, neither do participants usually come to an debate with a completely
open mind. Usually there will be some actions they are predisposed to per-
form, and others which they are reluctant to perform, and they will have a
tendency to prefer arguments which match these predispositions. For example
a politician forming a political programme may recognise that raising taxa-
tion is electorally inexpedient and so must exclude any arguments with the
conclusion that taxes should be raised from the manifesto, while ensuring that
arguments justifying actions bringing about core objectives are present: other
arguments are acceptable in so far as they enable this. This kind of initial intu-
itive response to arguments will be used to drive the construction of positions
and formation of a value order. A similar technique for constructing positions
on the basis of Dung’s framework has been proposed in [6]. Because this treat-
ment does not make use of values, however, it cannot use these reasons for
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action to motivate choices, and there is no relation between the arguments
which can be exploited to demand that choices are made in a consistent and
coherent manner. Our extensions to include values enable us to impose this
requirement of moral consistency on the reasoners.

Our overall aim is to provide a framework for modelling practical reason-
ing, which is based on sets of arguments together with information as to the
other arguments they attack, and the values promoted by their acceptance.
Our framework will account for three key features of practical reasoning: that
evaluation of arguments is always in the context of a debate; that there is al-
ways potential for disagreement, explicable in terms of the different interests
and values of the audiences; and that values are ordered in the course of the
debate.

2 Dung’s Argumentation Frameworks

We recall the following basic concepts that were introduced in Dung [12].

Definition 1 An argument system is a pair H = 〈X ,A〉, in which X is a
finite set of arguments and A ⊂ X × X is the attack relationship for H. A
pair 〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’. For R,
S subsets of arguments in the system H(〈X ,A〉), we say that

a. s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈ A.
b. x ∈ X is acceptable with respect to S if for every y ∈ X that attacks x

there is some z ∈ S that attacks y.
c. S is conflict-free if no argument in S is attacked by any other argument

in S.
d. A conflict-free set S is admissible if every argument in S is acceptable

with respect to S.
e. S is a preferred extension if it is a maximal (with respect to ⊆) admissible

set.
f. S is a stable extension if S is conflict free and every argument y 6∈ S is

attacked by S.
g. H is coherent if every preferred extension in H is also a stable extension.

An argument x is credulously accepted if there is some preferred extension
containing it; x is sceptically accepted if it is a member of every preferred
extension.

The concepts of credulous and sceptical acceptance motivate the following
decision problems that have been considered in [10,14].

5



Credulous Acceptance (ca)
Instance: Argument System, H = 〈X ,A〉, x ∈ X .
Question: Is x credulously accepted in H?

Sceptical Acceptance (sa)
Instance: Argument System, H = 〈X ,A〉, x ∈ X .
Question: Is x sceptically accepted in H?

The results of [10] establish that ca is np–complete, while [14] have proven
sa to be Πp

2–complete 1 . Abstracting away concerns regarding the internal
structure and representation of arguments affords a formalism which focuses
on the relationship between individual arguments as a means of defining sev-
eral different notions of acceptability. In this paper preferred extensions are of
particular interest as these represent maximal coherent positions that can be
defended against all attackers.

3 Value Based Argument Frameworks

Value Based Argument Frameworks (vafs), were introduced in [3,4] as a mech-
anism with which to provide an interpretation of multiple preferred extensions
in a single argument system. Thus, the basic formalism of Dung’s framework
as captured in Defn. 1 is extended to provide a semantics for distinguishing
and choosing between consistent but incompatible belief sets through the use
of argument values: arguments are seen as grounded on one of a finite num-
ber of abstract values and, where there are multiple preferred extensions, the
interpretation of which to “accept” is treated in terms of preference orderings
of the underlying value set according to the views held by a particular audi-
ence. Thus while in the standard Argumentation system the choice between
preferred extensions is arbitrary, in a vaf we are able to motivate such choices
by reference to the value ordering of the audience. The formal definition of
such value-based argumentation frameworks is given below.

Definition 2 A value-based argumentation framework (vaf), is defined by a
triple 〈H(X ,A),V , η〉, where H(X ,A) is an argument system, V = {v1, v2, . . . ,
vk} a set of k values, and η : X → V a mapping that associates a value
η(x) ∈ V with each argument x ∈ X .

1 Assuming that the argument system is coherent, sa is co-np–complete. While
the problem of testing coherence is itself shown to Πp

2–complete in [14], there are
polynomial-time verifiable properties which ensure coherence, e.g. if the directed
graph structure defined by 〈X ,A〉 contains no odd-length cycles.
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Central to the development presented in [4,3] and to the main themes of the
present article is the concept of an audience 2 . The definition presented below
refines the original form presented in [4].

Definition 3 An audience for a vaf 〈X ,A,V , η〉, is a binary relation R ⊂
V × V whose (irreflexive) transitive closure, R∗, is asymmetric, i.e. at most
one of 〈v, v′〉, 〈v′, v〉 are members of R∗ for any distinct v, v′ ∈ V. We say
that vi is preferred to vj in the audience R, denoted vi �R vj, if 〈vi, vj〉 ∈ R∗.

Viewing R∗ in graph-theoretic terms, if R is an audience then R∗ induces
an acyclic directed graph over the vertex set V . Unless otherwise stated, we
identify audiences R with their closure R∗, e.g. for R ⊂ V × V given as part
of an instance to some problem involving vafs, we assume R = R∗.

Typically, an audience, R, will not describe a unique total ordering of V , but
will be “compatible” with several distinct such orderings, i.e. all total orders,
σ, for which vi �σ vj implies that 〈vj, vi〉 6∈ R, i.e. if σ is a total ordering of V
in which vi is preferred to vj then σ is compatible with the audience R only
if vj is not preferred to vi in the audience R. Formally, this set of compatible
total orderings corresponds to the set of linear extensions of the (strict) partial
order induced by R∗.

Definition 4 Let R be an audience, α is a specific audience (compatible with
R) if α is a total ordering of V and

∀ v, v′ ∈ V 〈v, v′〉 ∈ α ⇒ 〈v′, v〉 6∈ R∗

We use χ(R) to denote the set of specific audiences compatible with R.

Example 1 For V = {A,B,C}.

1. If R = ∅ then R∗ = ∅ and

χ(R) =



























{〈A,B〉, 〈B,C〉, 〈A,C〉} ; {〈A,B〉, 〈C,B〉, 〈A,C〉}

{〈B,A〉, 〈B,C〉, 〈A,C〉} ; {〈B,A〉, 〈B,C〉, 〈C,A〉}

{〈A,B〉, 〈C,B〉, 〈C,A〉} ; {〈B,A〉, 〈C,B〉, 〈C,A〉}



























2 The term “audience”, the use of which derives from [20] is also used in Hunter [18],
although he distinguishes between audiences only in terms of beliefs, whereas [4] dis-
tinguishes them in terms of values, while also accommodating differences in beliefs.
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Respectively corresponding to the total orderings,

A �σ B �σ C ; A �σ C �σ B

B �σ A �σ C ; B �σ C �σ A

C �σ A �σ B ; C �σ B �σ A

so that χ(∅) contains every possible specific audience. Reflecting this prop-
erty, we refer to the special case R = ∅ as the universal audience. In ad-
dition when the term specific audience is used without explicit reference
to some audience R, the underlying audience will be understood to be the
universal audience.

2. If R = {〈A,B〉, 〈B,C〉} then R∗ = {〈A,B〉, 〈B,C〉, 〈A,C〉} so that
χ(R) = {R∗}, i.e. χ(R) contains exactly one specific audience: that
corresponding to the ordering A �σ B �σ C.

3. If R = {〈A,B〉, 〈C,B〉} then R∗ = R and

χ(R) = {{〈A,B〉, 〈C,B〉, 〈A,C〉} ; {〈A,B〉, 〈C,B〉, 〈C,A〉}}

corresponding to the orderings A �σ C �σ B and C �σ A �σ B.

We adopt the convention of using lower case Greek letters – α, β, γ, etc. –
when referring to specific audiences, whilst reserving upper case calligraphic
symbols – R, S, T , etc. – for audiences in the sense of Defn. 3.

Using vafs, ideas analogous to those of admissible argument in standard ar-
gument systems are defined in the following way. Note that all these notions
are now relative to some audience.

Definition 5 Let 〈X ,A,V , η〉 be a vaf and R an audience.

a. For arguments x, y in X , x is a successful attack on y (or x defeats y)
with respect to the audience R if: 〈x, y〉 ∈ A and it is not the case that
η(y) �R η(x).

b. An argument x is acceptable to the subset S with respect to an audience
R if: for every y ∈ X that successfully attacks x with respect to R, there
is some z ∈ S that successfully attacks y with respect to R.

c. A subset S of X is conflict-free with respect to the audience R if: for
each 〈x, y〉 ∈ S × S, either 〈x, y〉 6∈ A or η(y) �R η(x).

d. A subset S of X is admissible with respect to the audience R if: S is
conflict free with respect to R and every x ∈ S is acceptable to S with
respect to R.

e. A subset S is a preferred extension for the audience R if it is a maximal
admissible set with respect to R.

f. A subset S is a stable extension for the audience R if S is admissible with
respect to R and for all y 6∈ S there is some x ∈ S which successfully
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attacks y with respect to R.

We observe that in the case of R being the universal audience the forms
described within Defn. 5 (a)–(f) match exactly the corresponding structures
in Dung’s framework as described in Defn. 1 (a)–(f).

A standard consistency requirement which we assume of the vafs considered is
that every directed cycle of arguments in these contains at least two differently
valued arguments. We do not believe that this condition is overly restricting,
since the existence of such cycles in vafs can be seen as indicating a flaw in the
formulation of the framework. While in standard argumentation frameworks
cycles arise naturally, especially if we are dealing with uncertain or incomplete
information, in vafs odd length cycles in a single value represent paradoxes
and even length cycles in a single value can be reduced to a dilemma which
must be resolved by choosing one of the alternatives. Given the absence of
cycles in a single value the following important property of vafs with respect
to specific audiences was demonstrated in [4].

Fact 6 For every specific audience, α, 〈X ,A,V , η〉 has a unique non-empty
preferred extension, P (〈X ,A,V , η〉, α) which can be constructed by an algo-
rithm that takes O(|X |+ |A|) steps. Furthermore P (〈X ,A,V , η〉, α) is a stable
extension with respect to α.

From Fact 6 it follows that, when attention is focused on one specific audience,
analogues of many decision questions known to be intractable in the standard
setting become significantly easier.

There are, however, a number of new issues that arise in the value-based
framework from the fact that the relative ordering of different values promoted
by distinct specific audiences results in arguments falling into one of three
categories.

C1. Arguments, x, that are in the preferred extension P (〈X ,A,V , η〉, α) for
some specific audiences compatible with R but not all. Such arguments
being called subjectively acceptable with respect to R.

C2. Arguments, x, that are in the preferred extension P (〈X ,A,V , η〉, α) for
every specific audience compatible with R. Such arguments being called
objectively acceptable with respect to R.

C3. Arguments, x, that are not in any preferred extension P (〈X ,A,V , η〉, α)
no matter which specific audience, α, compatible with R is used. Such
arguments being called indefensible with respect to R.

While we have introduced these in terms of arbitrary audiences, R, the ideas
presented in (C1)–(C3) are particularly of interest in the case of the universal
audience: subjective acceptability indicating that there is at least one specific
audience (total ordering of values) under which p is accepted; objective accept-
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ability that p must be accepted irrespective of the value ordering described by
a specific audience; and, in contrast, p being indefensible indicating that no
specific audience can ever accept p.

As we indicated in the introductory discussion, one may often find in practical
reasoning contexts that participants disagree on value priorities yet nonethe-
less have a “common stance” regarding the acceptability or otherwise of par-
ticular arguments. We may model such behaviours in terms of the following
formalism.

Definition 7 Let 〈X ,A,V , η〉 be a vaf and R, S audiences. Given x ∈ X we
say that R and S have grounds for agreement over x if either

(1) There are specific audiences α ∈ χ(R), β ∈ χ(S) such that

x ∈ P (〈X ,A,V , η〉, α) and x ∈ P (〈X ,A,V , η〉, β)

or
(2) For all specific audiences α ∈ χ(R) ∪ χ(S), x 6∈ P (〈X ,A,V , η〉, α).

We say that R and S are at issue over x if R and S do not have grounds
for agreement over x, e.g. x ∈ P (〈X ,A,V , η〉, α) for some α ∈ χ(R), but
x 6∈ P (〈X ,A,V , η〉, β) for all β ∈ χ(S).

We observe, in passing, that while it may seem more natural to define R
and S as having “grounds for agreement over x” via the existence of some
α ∈ χ(R) ∩ χ(S) for which x ∈ P (〈X ,A,V , η〉, α), such a choice turns out to
be rather too restrictive: there could be no specific audience compatible with
both R and S, e.g. if v �R v′ and v′ �S v, however, this need not not prevent
x being subjectively acceptable with respect to both, i.e. the disagreement of
the relative ordering of {v, v′} is irrelevant to either audience’s view of x.

In the following section we consider the computational complexity of some nat-
urally arising decision questions regarding vafs, audiences, and these classes
of acceptability.

4 Audience Related Properties of vafs

4.1 Complexity results

In this section 3 we consider the following decision problems:

3 The results presented in this section are an extended and revised treatment of
work originally described in [16,17].
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Subjective Acceptance (sba)
Instance: A vaf 〈X ,A,V , η〉; argument x ∈ X ; audience R.
Question: Is there a specific audience, α ∈ χ(R) for which x ∈ P (〈X ,A,V , η〉, α)?

Objective Acceptance (oba)
Instance: A vaf 〈X ,A,V , η〉; argument x ∈ X ; audience R.
Question: Is x ∈ P (〈X ,A,V , η〉, α) for every specific audience α ∈ χ(R)?

Audiences at Issue (aai)
Instance: A vaf 〈X ,A,V , η〉; argument x ∈ X ; audiences R, S.
Question: Is there a specific audience α ∈ χ(R) for which x ∈ P (〈X ,A,V , η〉, α)
but no specific audience β ∈ χ(S) with x ∈ P (〈X ,A,V , η〉, β)?

Our results below establish that

(1) sba is np–complete, even if R is the universal audience. (Theorem 8)
(2) oba is co-np–complete, again even if R is the universal audience. (The-

orem 9).
(3) aai is d

p–complete, even in the special case R = {〈v, v′〉} S = {〈v′, v〉}
for distinct values v, v′ ∈ V . (Theorem 10)

We recall that d
p is the class of languages that may be expressed as the

intersection of some language L1 ∈ np with a language L2 ∈ co-np.

Theorem 8 sba is np–complete.

Proof: For membership in np simply non-deterministically choose an audi-
ence α from the k! available then test if α ∈ χ(R) and x ∈ P (〈X ,A,V , η〉, α),
the latter test being accomplished by a polynomial-time algorithm, such as
that given in [4].

We prove that sba is np–hard for the special case of R being the universal
audience, using a reduction from 3-sat. Given an instance Φ(Zn) = ∧m

i=1(yi,1∨
yi,2 ∨ yi,3) of this we construct a vaf 〈XΦ,AΦ,VΦ, η〉 and argument x such
that 〈〈XΦ,AΦ,VΦ, η〉, x, ∅〉 is a positive instance of sba if and only if Φ(Zn) is
satisfiable.

The framework uses 4n+m+1 arguments which we denote {Φ, C1, . . . , Cm}∪
∪n

i=1{pi, qi, ri, si}. The relationship AΦ contains attacks 〈Cj, Φ〉 for each 1 ≤
j ≤ m and attacks {〈pi, qi〉, 〈qi, ri〉, 〈ri, si〉, 〈si, pi〉} for each 1 ≤ i ≤ n. The
remaining attacks in AΦ are as follows. For each clause yi,1∨yi,2∨yi,3 of Φ(Zn)
if yi,j is the literal zk, the attack 〈pk, Ci〉 is included in AΦ; if yi,j is the literal
¬zk, then the attack 〈qk, Ci〉 is added.

The final part of the construction is to describe the value set VΦ and association
of arguments with values prescribed by η. The set VΦ contains 2n + 1 values
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{con} ∪ ∪n
i=1{posi, negi} and the mapping η assigns the value con to Φ and

each argument in {C1, . . . , Cm}. Finally the arguments {pi, ri} are mapped to
the value posi and the arguments {qi, si} to the value negi. To complete the
instance we set x to be Φ. We note that the constructed system satisfies the
requirement that all cycles contain at least two distinct values.

Figure 1 illustrates the construction for the cnf.

Φ(x, y, z) = (x ∨ y ∨ z)(¬x ∨ y ∨ ¬z)(x ∨ ¬y ∨ z)

x y z

p

q

r

s

p p

q q

r r

s s

C2 C3C1

Φ con

conconcon

pos

pos
pos pos

pos pos

neg
neg

neg neg

neg

neg

Fig. 1. vaf constructed for Φ(x, y, z) = (x ∨ y ∨ z)(¬x ∨ y ∨ ¬z)(x ∨ ¬y ∨ z)

We claim that 〈〈XΦ,AΦ,VΦ, η〉, Φ, ∅〉 is a positive instance of sba if and only
if Φ(Zn) is satisfiable.

Suppose first that Φ(Zn) is satisfied by an instantiation 〈a1, a2, . . . , an〉 of Zn.
Consider any specific audience α for which posi �α negi if ai = >, negi �α posi

if ai = ⊥, and v �α con for all v ∈ VΦ/{con}. Since Φ(Zn) is satisfied,
for each Ci there is some literal yi,j that is assigned > in the instantiation
〈a1, . . . , an〉. Consider the arguments {pk, qk, rk, sk} for which yi,j ∈ {zk,¬zk}.
If yi,j = zk then pk is acceptable in {pk, rk} and, in addition, pk successfully
attacks Ci with respect to α; if yi,j = ¬zk then qk is acceptable in {qk, sk}
and, again, successfully attacks Ci with respect to α. Thus every argument
Ci is successfully attacked by an argument pk or qk and thence Φ together
with these form an admissible set with respect to α. Thus we have a specific
audience, α, with respect to which Φ is subjectively accepted.

On the other hand, suppose α is a specific audience for which Φ belongs to
P (〈XΦ,AΦ,VΦ, η〉, α). It cannot be the case that Ci ∈ P (〈XΦ,AΦ,VΦ, η〉, α)
since η(Φ) = η(Ci) = con and so the presence of any Ci would suffice to
eliminate Φ. The specific audience α must therefore be such that every Ci

is successfully attacked by one of its three possible attackers with respect to
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α. Let 〈t1, t2, . . . , tm〉 be the choices which give these successful attacks on
〈C1, . . . , Cm〉. First observe that we cannot have ti = pk and tj = qk for any
1 ≤ k ≤ n and distinct Ci and Cj: under α either η(pk) �α η(qk) and so qk

would not succeed in its attack or η(qk) �α η(pk) with the attack by pk failing.
It follows that the instantiation of Zn by zi = > if pi ∈ 〈t1, t2, . . . , tm〉, zi = ⊥
if qi ∈ 〈t1, t2, . . . , tm〉 is well-defined and yields a true literal in every clause,
i.e. results in a satisfying instantiation of Φ(Zn). This completes the proof. 2

Theorem 9 oba is co-np–complete.

Proof: Membership in co-np follows by the algorithm which tests for all k!
specific audiences, α, whether α ∈ χ(R) ⇒ x ∈ P (〈X ,A,V , η〉, α).

We again establish co-np–hardness for the special case of R being the uni-
versal audience, via a reduction from 3-unsat: the problem of deciding if a
3-cnf formula Φ(Zn) = ∧m

i=1(yi,1 ∨ yi,2 ∨ yi,3) is unsatisfiable.

The reduction constructs an identical vaf to that of the previous theorem,
but with one additional argument, {test}, having η(test) = con and whose
sole attacker is the argument Φ. Letting 〈XΦ,AΦ,VΦ, η〉′ denote the resulting
system, we claim that 〈〈XΦ,AΦ,VΦ, η〉′, test, ∅〉 defines a positive instance of
oba if and only if Φ is unsatisfiable. From the proof of Theorem 8, test will
fail to be acceptable with respect to any specific audience α for which Φ is
admissible. Such an audience exists if and only if Φ(Zn) is satisfiable. We
therefore deduce that 〈〈XΦ,AΦ,VΦ, η〉′, test, ∅〉 is accepted as an instance of
oba if and only if Φ(Zn) is unsatisfiable. 2

Theorem 10 aai is d
p–complete.

Proof: For membership in d
p, define the language L1 to be

{〈〈X ,A,V , η〉,R,S, x〉 : ∃α ∈ χ(R) such that x ∈ P (〈X ,A,V , η〉, α)}

Similarly, define L2 as

{〈〈X ,A,V , η〉,R,S, x〉 : ∀α ∈ χ(S) x 6∈ P (〈X ,A,V , η〉, α)}

Then 〈〈X ,A,V , η〉,R,S, x〉 is accepted as an instance of aai if and only if it
belongs to the set L1∩L2. Since it is immediate that L1 ∈ np and L2 ∈ co-np

this suffices to give aai ∈ d
p.

We prove that aai is d
p–hard for the special case of R = {〈v, v′〉} and S =

{〈v′, v〉} for v, v′ distinct values in V .

13



We first show that the problem Critical Variable (cv) is d
p–hard: instances of

this comprise a cnf formula Φ(Zn) and a variable z ∈ Zn with instances ac-
cepted if there is a satisfying instantiation in which z = > but no satisfying in-
stantiation in which z = ⊥. To see that cv is d

p–hard we use a reduction from
the d

p–complete problem sat-unsat. Given an instance 〈Φ1(Zn), Φ2(Zn)〉 of
this, the instance 〈Ψ, z〉 of cv is simply 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 where z
is a new variable. We note that for Φ in cnf, z ∨ Φ translates to the cnf

formula in which every clause C of Φ is replaced by the clause z ∨ C. It is
easy to see that 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 is a positive instance of cv if and
only if 〈Φ1(Zn), Φ2(Zn)〉 is a positive instance of sat-unsat: if Φ1 is satisfiable
then (¬z ∨ Φ1) ∧ (z ∨ Φ2) has a satisfying instantiation with z = > since it
reduces to Φ1; if Φ2 is unsatisfiable then there is no satisfying instantiation
with z = ⊥ since the formula now reduces to Φ2, hence if 〈Φ1, Φ2〉 accepted
as an instance of sat-unsat then 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 is accepted as an
instance of cv. Similarly, if 〈(¬z ∨ Φ1) ∧ (z ∨ Φ2), z〉 is a positive instance of
cv then (¬z ∨ Φ1) ∧ (z ∨ Φ2) is satisfiable when z = >, i.e. Φ1 is satisfiable,
and (¬z ∨ Φ1) ∧ (z ∨ Φ2) is unsatisfiable when z = ⊥, i.e. Φ2 is unsatisfiable.

The proof that aai is d
p–hard now follows easily, using the reduction of The-

orem 8: given an instance 〈Φ(Zn), z〉 of cv form the vaf 〈XΦ,AΦ,VΦ, η〉 de-
scribed in the proof of Theorem 8 (where we note that this trivially extends
to arbitrary cnf formulae). Set the audiences in the instance of aai to be
R = {〈posz, negz〉} and S = {〈negz, posz〉}. Finally fix the argument x to
be Φ. Consider the resulting instance 〈〈XΦ,AΦ,VΦ, η〉,R,S, Φ〉. If it is a pos-
itive instance of aai then there is a specific audience α ∈ χ(R) for which
Φ ∈ P (〈XΦ,AΦ,VΦ, η〉, α): this specific audience must have posz �α negz

(since 〈posz, negz〉 ∈ R): it has already been seen that this indicates Φ(Zn) has
a satisfying instantiation with z = >. Similarly, if 〈〈XΦ,AΦ,VΦ, η〉,R,S, Φ〉
is a positive instance of aai, then Φ 6∈ P (〈XΦ,AΦ,VΦ, η〉, α) for any specific
audience in χ(S), i.e. all specific audiences within which negz �α posz. From
our earlier analysis, Φ(Zn) has no satisfying instantiation with z = ⊥.

On the other hand should 〈Φ(Zn), z〉 be a positive instance of cv then the
argument of Theorem 8 yields a specific audience α with posz �α negz i.e.
α ∈ χ(R) for which Φ ∈ P (〈XΦ,AΦ,VΦ, η〉, α) from a satisfying instantiation
of Φ(Zn) with z = >. Similarly, the unsatisfiability of Φ(Zn) when z = ⊥
indicates that no specific audience α having negz �α posz, i.e. those in χ(S),
will result in Φ ∈ P (〈XΦ,AΦ,VΦ, η〉, α). We deduce that 〈Φ(Zn), z〉 is a positive
instance of cv if and only if 〈〈XΦ,AΦ,VΦ, η〉,R,S, Φ〉 is a positive instance of
aai, thereby establishing that aai is d

p–complete. 2
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4.2 Efficient Algorithms on vafs

We have now arrived at the position where we can detect efficiently the argu-
ments acceptable to any specific audience, but cannot guarantee that we will
be able to determine the status of an argument with respect to the univer-
sal audience. We now consider another problem relating to vafs which does
admit an efficient solution, namely finding an audience for whom a subset of
arguments represents a preferred extension, if one exists.

We begin by giving a formal statement of our problem:

Set Acceptance (sac)
Instance: A vaf 〈X ,A,V , η〉; a subset S of X .
Question: Is there an audience R such that ∀α ∈ χ(R), S = P (〈X ,A,V , η〉, α)?

In this section we address this problem and some related applications. On first
inspection, it might appear that, given the status of sba, this too would be
an intractable problem. We will show, however, that this pessimistic view is
ill-founded: the critical difference between the two problems is that subjective
acceptance concerns the existence of a specific audience with respect to which
a single given argument is accepted; whereas the current problem asks for an
audience with respect to which a given set of arguments defines the totality
of what that audience is capable of accepting.

Consider the following algorithm:

find audience

Instance: vaf 〈X ,A,V , η〉; S ⊆ X .
Returns: Audience R such that ∀α ∈ χ(R), S = P (〈X ,A,V , η〉, α) or fail

if no such audience exists.

1. R := ∅;
2. for each 〈x, y〉 ∈ S × S:
2.1. if 〈x, y〉 ∈ A then

a. if η(x) = η(y) then report fail else

R := R ∪ {〈η(y), η(x)〉}

3. R := R∗, i.e. replace R with its transitive closure.
4. if R is not an audience (i.e. contains 〈v, v′〉 and 〈v, v′〉 for some v and v′)

then report fail else
5. for each z 6∈ S

a. if η(z) = η(x) for some x ∈ S then
Find some y ∈ S for which 〈y, z〉 ∈ A and 〈η(z), η(y)〉 6∈ R.
report fail if no suitable y ∈ S is found.
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b. else – η(z) does not occur as the value of any x ∈ S
Choose any y ∈ S withh 〈y, z〉 ∈ A;
R := R∪ {〈η(y), η(z)〉}
report fail if no y ∈ S attacks z.

6. R := R∗.
7. return R

Theorem 11 Given an instance 〈X ,A,V , η〉 and S ⊆ X the algorithm find

audience returns an audience R such that ∀α ∈ χ(R), S = P (〈X ,A,V , η〉, α)
or reports fail if no such audience exists. Furthermore the time taken is
O(|X |2).

Proof: Steps (2) and (3) of find audience construct a partial ordering of
the values in S that satisfies the requirement that S must be conflict-free with
respect to the audience: thus each 〈x, y〉 ∈ A for which both x and y are in
S forces an ordering of the values {η(x), η(y)} according to the constraints
specified in Defn. 5(c). All constraints arising thus are added by the loop com-
prising (2), resulting in the set of constraints R upon completion. At step (3),
this set is extended to include all of the additional pair-wise orderings arising
through the property that if 〈η(x), η(y)〉 ∈ R and 〈η(y), η(z)〉 ∈ R then any
audience consistent with R must have η(x) �R η(z): constructing all of the
pair-wise orderings that should be included simply involves computing the (ir-
reflexive) transitive closure of the relations identified after (2) has completed.
Step (4) deals with the requirement that since the audience relation must
be asymmetric the set of pairs R cannot contain both 〈vi, vj〉 and 〈vj, vi〉:
this would happen if, for example, there were {x, y, z} ∈ S with 〈x, y〉 ∈ A,
〈y, z〉 ∈ A and η(x) = η(z). Since (3) has formed the transitive closure of the
constraint relationship identified in (2), the “consistency” test in (4) involves
checking that for each x ∈ S the pair 〈η(x), η(x)〉 has not been added. Step
(5) is concerned with checking that S is maximal with respect to the audience
that has been constructed in the earlier stages. Again, from Definition 5, this
simply involves testing for each argument z 6∈ S, that z cannot be added to
S without creating a conflict. There are two possibilities. Firstly, the value
η(z) is among those considered in S: in this case it suffices to ensure that z is
successfully attacked by some y ∈ S. Secondly, the value η(z) is distinct from
any value used in S: in this case it suffices to find any y ∈ S that attacks z. 2

4.3 Discussion: Algorithms and Complexity in Dung’s Framework and vafs

Turning to the relative complexity of seemingly related problems within vafs
and Dung’s framework, it could appear that the result presented in Theorem 11
is at odds with that of Theorem 8. That this is not the case is easily seen
by noting that should the algorithm analysed in Theorem 11 return fail
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given some set S ⊆ X then this does not imply that each argument in S is
indefensible. For example, consider the extreme case where S contains a single
argument x: each of the following is possible

(1) x is subjectively acceptable and find audience reports fail.
(2) x is objectively acceptable and find audience reports fail.
(3) {x} is admissible w.r.t some R and find audience reports fail.

The algorithm find audience returns R (rather than fail) only if S is
both maximal and admissible: thus, the first two cases will arise whenever x
is attacked by another argument; the final case would occur whenever S was
not maximal, i.e. there is some z 6∈ S that is not successfully attacked by any
member of S.

We note that changing the loop condition governing (5) in this algorithm to

for each 〈z, y〉 ∈ A for which z 6∈ S and y ∈ S

(with the remainder of (5) unaltered) gives an algorithm to construct an au-
dience with respect to which S is an admissible set. It is well-known that
checking if a given set of arguments is admissible or defines a stable extension
(in the schema of [12]) can be done efficiently. In vafs the unique preferred
extension with respect to a specific audience is a stable extension, so we may
interpret find audience (and its modification) as confirming that testing if
S is admissible or stable remains tractable within vafs, despite the additional
constraints arising from the concept of audience.

The concepts of subjective and objective acceptance have a (superficial) sim-
ilarity to those of credulous and sceptical acceptance. In this light, coupled
with the facts that deciding if an argument is credulously accepted is np–
complete [10], deciding if an argument is sceptically accepted is Πp

2–complete [14]
the intractability of sba and oba is unsurprising. 4

We note, however, that there are a number of differences between the two
groups of problems. One obvious distinction is in the form of the search-space
structures: ca and sa ranging over subsets of X ; sba and oba over possible
(total) orderings of V . In addition, we have the following,

Theorem 12

a. sba(〈X ,A,V , η〉, x, ∅) 6⇒ ca(〈X ,A〉, x).
b. oba(〈X ,A,V , η〉, x, ∅) 6⇒ sa(〈X ,A〉, x).

4 In addition one can note the structural similarity of the vaf constructed in the re-
duction from 3-sat of Theorem 8 to the argument system constructed in reductions
from 3-sat to credulous acceptance, e.g. [15, Defn. 7, p. 234].
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c. oba(〈X ,A,V , η〉, x, ∅) 6⇒ ca(〈X ,A〉, x).
d. sa(〈X ,A〉, x) 6⇒ oba(〈X ,A,V , η〉, x, ∅).
e. ca(〈X ,A〉, x) 6⇒ sba(〈X ,A,V , η〉, x, ∅).
f. sa(〈X ,A〉, x) 6⇒ sba(〈X ,A,V , η〉, x, ∅).

Proof: Consider the three vafs within which V = {A,B} shown in Figure 2.

(a)

A

B B

x

y z

(b)

yB z

A
x

y

x

z

u

B

A

w

A

A

B

B

(c)

Fig. 2. Example vafs in proof of Theorem 12

For the system of Figure 2(a), the unique preferred extension is the empty set.
When interpreted as a vaf, however, the argument x is objectively acceptable,
and the argument z is subjectively acceptable as witnessed by the specific
audience B � A. These establish cases (a–c) of the theorem.

In the system of Figure 2(b), there is (again) a unique preferred extension
comprising the arguments {y, z} (thus both are sceptically accepted). For the
specific audience A � B the associated preferred extesnion is {x, z}: this does
not contain y thus proving (d).

Finally noting that (f) subsumes (e), in the system depicted in Figure 2(c),
the preferred extension is {u,w, x}. The argument x, however, is indefensible
in the vaf interpretation: the specific audience A � B leaves no counterattack
to the attack by z on x since w does not succesfully attack z with respect to
the audience A � B. Similarly, for the remaining specific audience B � A,
the attack by y and x can no longer be countered since u does not successfully
attack y with respect to the audience B � A. 2

Thus, it is not generally possible to deduce acceptance by specific audiences
or indefensibility from corresponding acceptance classes in the underlying ar-
gument system produced by abstracting away references to values.
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5 Dialogue Processes for Determining Argument Status

Given a standard argument system – 〈X ,A〉 – and an argument x ∈ X resolv-
ing the question of whether or not x is credulously accepted can be viewed,
in a natural way, as a dialogue between a proponent of x (whom we shall de-
note PRO) and an opposing player (denoted as OPP): the latter advancing
attacking arguments, y; the former selecting, in turn, arguments that coun-
terattack these. This high-level abstraction of dialogue in argument systems
is already proposed within Dung’s original presentation [12, p. 332], but is
not subsequently developed therein. Subsequently, however, a number of for-
malised dialogue processes building on standard argument systems have been
developed and analysed. In this section we review such approaches and, infor-
mally, present the notion of a “position” within a vaf: positions and dialogue
mechanisms for constructing these are treated in depth in Section 6.

An important generic formalism for defining dialogue schemes was introduced
by Jakobovits and Vermeir [19]. The model defined presents dialogue games
on argument systems – 〈X ,A〉 – as a sequence of moves, µ0µ1 · · ·µr · · · made
by the players PRO and OPP. A specific instantiation of this generic scheme
must provide a repertoire of move types (with particular move types involv-
ing parameters such as, e.g. individual arguments); and a legal move function
that defines for any “partial” dialogue µ0 · · ·µr which of {PRO, OPP} should
contribute the next move, µr+1 and the instantiations of available moves for
the player concerned. While it is, usually, the case that PRO makes the initial
move and that players alternate turns thereafter, it is convenient to relax this
under certain conditions, e.g. when the case being set out by PRO involves
advancing a number of separate arguments prior to the dialogue proper com-
mencing: such a convention is adopted in the dialogue mechanisms presented
in Section 6. The formalism of [19] has been used to specify dialogue proce-
dures for credulous reasoning and determination of preferred sets in work of
Cayrol et al.[7,8]. As has been shown in Amgoud and Cayrol [1] the formalism
is general enough to accommodate models that develop Dung’s frameworks:
[1] describing instantiations yielding dialogue mechanisms in Preference-based
argument frameworks.

In addition to these schemes, one dialogue process – the class of Two Party
Immediate response disputes (tpi-disputes) – has been the subject of detailed
analysis. This approach was introduced by Vreeswijk and Prakken [22], and
can be interpreted as restricting the arguments that may be used by PRO and
OPP to those that directly attack the most recent argument advanced: thus
if x is the argument put forward by PRO in move µr then the argument y
played by OPP in µr+1 must be such that 〈y, x〉 ∈ A. The resulting dialec-
tic proof procedures described in [22] are proven to be sound and complete
for deciding credulous acceptance. In the case of proving sceptical acceptance,
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tpi-disputes are sound and complete when applied to coherent argument sys-
tems. The development of sound and complete proof mechanisms for sceptical
argumentation raises a number of difficulties as discussed in [14, pp. 201-2].
An alternative formalisation of tpi-disputes is described and studied in [15]:
building on the observation of [22, p. 247] that provision must be made for
both PRO and OPP to “backtrack” to some earlier point in the dialogue, [15]
analyse the “efficiency” of tpi-disputes when applied as a propositional proof
theory, showing it to be polynomially-equivalent 5 to the cut-free Gentzen
calculus. Thus, there are examples in which demonstrations that an argu-
ment is not credulously accepted require exponentially many moves in the
total number of arguments in the system. Finally, there is the recent work
of Dung et al. [13], proposing a novel approach to the synthesis of dialectic
proof procedures within the assumption-based framework of [5]: in this the
use of “backward reasoning” is promoted as a means of resolving whether an
argument is admissible.

In Section 6 our aim is to develop similar dialogue based mechanisms to those
outlined above, but tailored to the characteristics of value-based argument
frameworks. 6 We note here that starting from the basis of a vaf and the
universal audience, player PRO has available options in addition to simply
bringing forward “new” arguments to counterattack those proposed by OPP:
PRO can also render an attack ineffective by expressing a suitable value order-
ing. In fact we wish to consider such dialogues as not so much concerned with
“individual” arguments but rather as considering whether a set of arguments
could be collectively acceptable to some audience. Thus in Section 6 our prin-
cipal interest is in whether a subset S ⊆ X in a vaf defines a position: that
is, whether there is some set T containing S and an audience R for which T
is admissible.

6 Dialogue Processes for Position Construction in vafs

6.1 Definition of a position

The notion of a position given at the end of the last section already addresses
two of the crucial features for practical reasoning identified in the introduction:
we are dealing with sets of arguments within an argumentation framework,
and so considering the context, and the fact that different positions will be
acceptable to different audiences captures the desired notion of rational dis-

5 The concept of “polynomially-equivalence” of proof systems derives from Cook
and Reckhow [9]
6 A very brief overview of the ideas presented in this section was given in [11].
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agreement. In this section we will address the remaining requirement: that the
ordering of values should emerge from the debate, on the basis of some intu-
itive predisposition towards certain actions and reluctance to perform others.

First, to allow reasoners to have certain arguments they wish to include in
a position, and others they wish to exclude, while they are indifferent to the
rest, we extend the definition of a vaf as follows:

Definition 13 A vaf 〈X ,A,V , η〉 is dor-partitioned if X = D ∪ O ∪ R for
disjoint sets D, O and R, which denote respectively a set of desired arguments,
a set of optional arguments and a set of rejected arguments. We use Des(X )
to denote D, Opt(X ) to denote O and Rej(X ) to denote R. A dor-partitioned
vaf is called a dor-vaf.

An admissible set which can be adopted as a position in a dor-vaf, is a set
that contains the desired arguments and possibly some optional arguments,
whose role is to help a desired argument to be acceptable to the position, by
“defending” it against its attackers. Formally:

Definition 14 Given a vaf 〈X ,A,V , η〉, an argument y is a defender of an
argument x with respect to an audience R if and only if there is a finite
sequence a0, . . . a2n such that x = a0, y = a2n, and ∀i, 0 ≤ i ≤ (2n − 1), ai+1

successfully attacks ai with respect to R.

The new notion of a position is defined via:

Definition 15 Given a dor-vaf 〈X ,A,V , η〉, a set S = Des(X ) ∪ Y where
Y ⊆ Opt(X ), is a position if and only if there exists at least one audience R
w.r.t. which S is admissible and ∀y ∈ Y , ∃x ∈ Des(X ) such that y is a defender
of x. An audience w.r.t. which S is a position is said to be a corresponding
audience of S.

This new notion of a position accomodates the third feature of practical rea-
soning: the preferences between values are not given as an input on the basis of
which the position is constructed, but are a result of constructing the position.

6.2 Development of a position

6.2.1 General idea

In order to build a position, one may start by considering the set of desired
arguments. This set must be first tested to demonstrate that there is at least
one audience w.r.t. which it is conflict-free. It may be that this condition can
only be satisfied by imposing some value preferences. If we can satisfy this test
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we must next ensure that any defeated argument in the set has a defender in
the set w.r.t. at least one audience. To this end, some optional arguments may
be added to the set as defenders of defeated arguments and/or some additional
constraints on the ordering of values may be imposed. We would like such
extensions of the position under development to be kept to a minimum. If the
process succeeds, then the set developed is a position and the set of constraints
determined by the construction can be extended into a corresponding audience
of this position, by taking its transitive closure. Otherwise, the user has to
reconsider the partition of the set of arguments; such issues are the subject of
ongoing research.

This construction can be presented in the form of a dialogue between two
players. One, the opponent, outlines why the set under development is not yet
a position, by identifying arguments which defeat members of the set. The
other, the proponent, tries to make the set under development a position by
extending it with some optional arguments and/or some constraints between
values. If the opponent has been left with no legal move available, then the set
of arguments played by the proponent is a position and the set of constraints
advanced can be extended into a corresponding audience. On the other hand,
if the proponent has no legal move available then the set of desired arguments
cannot be extended into a position.

This presentation in a dialogue form has the main advantage of making clear
why some constraints between values must be imposed, and why some optional
arguments must belong to the position. Moreover, it is highly appropriate to
the dialectical nature of practical reasoning identified above.

In Section 6.2.2, we present a formal dialogue framework that we instantiate in
Section 6.2.3 in order to check if a set of desired arguments is conflict-free for
at least one audience. We instantiate the dialogue framework in Section 6.2.4
to check if a conflict-free set of desired arguments can be made acceptable.
Finally, in Section 6.2.5 we combine these two instantiations of the dialogue
framework to construct positions, and we give an example of such a construc-
tion.

6.2.2 Dialogue framework

A dialogue framework to prove the acceptability of arguments in Dung’s ar-
gument system has been developed by [19] and refined in [8]. We extend this
last framework to deal with the development of positions in a dor-vaf.

Informally, a dialogue framework provides a definition of the players, the
moves, the rules and conditions under which the dialogue terminates, i.e. those
situations wherein the current player has no legal move in the dialogue. In or-
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der to capture the construction of positions, the dialogue framework we define
comprises two players, PRO and OPP. The rules are expressed in a so-called
‘legal-move function’. Regarding the definition of a move, since playing an ar-
gument may be possible only if some preferences between values hold, a move
must comprise an argument and a set of value preferences. In particular, a
player may propose some ordering of values, i.e without any specific argument
being involved (for example, when he wants to make a set of desired arguments
conflict-free for at least one audience). To this end, it is convenient to extend
the set of arguments of a dor-vaf 〈X ,A,V , η〉 with an ‘empty argument’ that
we denote by . This argument can be used if the proponent’s move is only
to advance a value ordering. We denote by X− the set X ∪ { }.

Definition 16 Let 〈X−,A,V , η〉 be a dor-vaf. A move in X− is a pair
[P, 〈X,V 〉] where P ∈ {PRO, OPP}, X ∈ X−, and V ⊆ V × V. PRO de-
notes the proponent and OPP denotes the opponent.

For a move µ = [P, 〈X,V 〉], we use pl(µ) to denote P , arg(µ) to denote X,
and val(µ) to denote V . The set of moves is denoted by M with M∗ being the
set of finite sequences of moves.

Let φ : M∗ → 2X
−×2V×V

be a legal-move function. A dialogue (or φ-dialogue)
d about S = {a1, a2, . . . , an} ⊆ X is a countable sequence µ01

µ02
. . . µ0n

µ1µ2 . . .
of moves in X− such that the following conditions hold:

(1) pl(µ0k
) = PRO, arg(µ0k

) = ak, and val(µ0k
) = ∅ for 1 ≤ k ≤ n

(2) pl(µ1) = OPP and pl(µi) 6= pl(µi+1), for i ≥ 1
(3) 〈arg(µi+1), val(µi+1)〉 ∈ φ(µ01

µ02
. . . µ0n

µ1 . . . µi).

In a dialogue about a set of arguments, the first n moves are played by PRO
to put forward the elements of the set, without any constraint on the value of
these arguments (1), and the subsequent moves are played alternately by OPP
and PRO (2). The legal-move function defines at every step what moves can
be used to continue the dialogue (3). We do not impose the requirement that
arg(µi+1) must attack arg(µi), because we want a dialogue to be sequential,
so we need to let OPP try all possible answers to any of PRO’s arguments,
but only one at a time.

Let 〈X−,A,V , η〉 be a dor-vaf, S ⊆ X and d = µ01
. . . µ0n

µ1µ2 . . . µi be
a finite φ-dialogue about S. We denote µi by last(d) and write φ(d) for
φ(µ01

. . . µ0n
µ1µ2 . . . µi). In addition, argPRO(d) (resp. valPRO(d)) will de-

note the set of arguments (resp. values) played by PRO in d.

Now that we have a way to define a dialogue and the rules of a dialogue, let
us define when a dialogue terminates (i.e. cannot be continued).
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Definition 17 Let 〈X−,A,V , η〉 be a DOR-vaf, φ be a legal-move function,
and d be a finite φ-dialogue. d cannot be continued if φ(d) = ∅. d is said to
be won by PRO if and only if d cannot be continued, and pl(last(d)) = PRO.

We introduce the notion of a definite attack and additional notations to in-
stantiate the dialogue framework to develop positions.

Definition 18 Let 〈X ,A,V , η〉 be a vaf, R be an audience, and x and y be
two arguments of X . x definitely attacks y with respect to R if: 〈x, y〉 ∈ A
and, η(x) = η(y) or 〈η(x), η(y)〉 ∈ R∗.

Notice that, if x definitely attacks y, then x successfully attacks y. Now, given
an audience R and x ∈ X−:

• A+
R(x) = {y ∈ X | x successfully attacks y w.r.t. R},

• A++
R (x) = {y ∈ X | x definitely attacks y w.r.t. R},

• A−
R(x) = {y ∈ X | y successfully attacks x w.r.t. R},

• A−−
R (x) = {y ∈ X | y definitely attacks x w.r.t. R},

• A±
R(x) = A+

R(x) ∪ A−
R(x).

Note that A+
R( ) = A−

R( ) = A−−
R ( ) = A++

R ( ) = ∅. Moreover, given a set
S ⊆ X and ε ∈ {+,−,±, ++,−−}, Aε

R(S) =
⋃

x∈S A
ε
R(x).

6.2.3 Checking conflict-freeness

Let 〈X−,A,V , η〉 be a dor-vaf and R be an audience. Des(X ) is not conflict-
free w.r.t. R if there are two desired arguments x and y such that y successfully
attacks x, that is, 〈y, x〉 ∈ A and 〈η(x), η(y)〉 /∈ R. In order to make Des(X )
conflict-free, the value of x should be made preferred to the value of y, that
is, 〈η(x), η(y)〉 added to R. This is possible only if R ∪ {〈η(x), η(y)〉} is an
audience.

Consider a dialogue d about Des(X ), based on a legal-move function where
OPP plays moves using arguments such as y and the value ordering is empty,
and where PRO only exhibits constraints on the value of these arguments.
Then the set of arguments played by PRO in d (i.e. argPRO(d)) is Des(X ), pos-
sibly along with { }. The value orderings played by PRO in d (i.e. valPRO(d))
must be the audience w.r.t. which moves are made. Formally:

Definition 19 Let 〈X−,A,V , η〉 be a dor-vaf, d be a dialogue about Des(X )
and R = valPRO(d). φ1 : M∗ → 2X

−×2V×V

is defined by:

• if the last move of d is by PRO (next move is by OPP),

φ1(d) =
⋃

y∈A−

R
(argPRO(d))∩argPRO(d)

{〈y, ∅〉};
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• if the last move of d is by OPP (next move is by PRO), let y = arg(last(d)),
V =

⋃

x∈A+

R
(y)∩argPRO(d){〈η(x), η(y)〉},

φ1(d) =











{〈 , V 〉} if R∪ V is an audience,

∅ otherwise.

The dialogue framework instantiated with the legal-move function φ1, is sound
and complete w.r.t. the determination of an audience w.r.t. which a set of
arguments is conflict-free as shown by the two following properties.

Property 1 (Soundness of φ1) Let 〈X ,A,V , η〉 be a vaf and S ⊆ X . If d
is a φ1-dialogue about S won by PRO, then S is conflict-free w.r.t. audience
valPRO(d).

Lemma 1 Let 〈X ,A,V , η〉 be a vaf and S ⊆ X . If d is a φ1-dialogue about
S, the last move of which is played by PRO, then valPRO(d) is an audience.

Proof: Let S = {a1, . . . , an} ⊆ X . Let d be a φ1-dialogue about S, the
last move of which is played by PRO. If the length of d is lower than or
equal to n, then all the moves of d have the form [PRO, 〈ai, ∅〉] where ai is
an argument of S (1 ≤ i ≤ n). So valPRO(d) = ∅, and then valPRO(d) is
obviously an audience. If the length of d is strictly greater than n, then d has
the form d = d′.[OPP, 〈y, ∅〉].[PRO, 〈 , V 〉], where V is, by definition, a set of
value preferences such that valPRO(d′.[OPP, 〈y, ∅〉])∪V is an audience. Since
valPRO(d′.[OPP, 〈y, ∅〉]) ∪ V = valPRO(d), valPRO(d) is an audience. 2

Lemma 2 Let 〈X ,A,V , η〉 be a vaf. Let d be a φ1-dialogue about a set S ⊆ X .

• If d is of length strictly lower than |S| then argPRO(d) ⊆ S.
• If d is of length |S| or |S| + 1 then argPRO(d) = S.
• If d is of length strictly greater than |S| + 1 then argPRO(d) = S ∪ { }.

Proof: Obvious, since by definition, the first |S| moves of d are by PRO and
contain S’s arguments; all the following moves by PRO contain the empty
argument. 2

Proof: (of Property 1) Let S ⊆ X . Let d be a φ1-dialogue about S won by
PRO. Let R = valPRO(d). R is an audience according to Lemma 1. Let
us show that S is conflict-free w.r.t. R. Since d is won by PRO, the length
of d is equal to or greater than |S| and so, according to Lemma 2, S =
argPRO(d) \ { }. Moreover, since d is won by PRO, we have:

φ1(d) = ∅ =
⋃

y∈A−

R
(argPRO(d))∩argPRO(d){〈y, ∅〉}

so A−
R(argPRO(d))∩argPRO(d) = ∅. In other words, no argument of argPRO(d)
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is successfully attacked by argPRO(d) w.r.t. R. Therefore argPRO(d), and
then S, is conflict-free w.r.t. audience valPRO(d). 2

Property 2 (Completeness of φ1) Let 〈X ,A,V , η〉 be a vaf. If S ⊆ X
is conflict-free w.r.t. at least one audience, and S 6= ∅, then there exists a
φ1-dialogue about S won by PRO.

Notation 1 Let 〈X ,A,V , η〉 be a vaf. Let S ⊆ X . V(S) denotes the set of
value preferences which makes ‘unsuccessful’ any successful (but not definite)
attack between arguments of S, that is: V(S) =

⋃

x∈S,y∈S s.t. 〈y,x〉∈A{〈η(x), η(y)〉}.

Lemma 3 Let 〈X ,A,V , η〉 be a vaf. A set S ⊆ X is conflict-free w.r.t. an
audience R if and only if V(S) ⊆ R∗.

Proof: Let R be an audience such that V(S) ⊆ R∗. Let x ∈ S and y ∈ S such
that 〈y, x〉 ∈ A. y does not successfully attack x w.r.t. R since 〈η(x), η(y)〉 ∈
V(S). So S is conflict-free w.r.t. R. Now, let S be a conflict-free set w.r.t. an
audience R. For any x ∈ S and y ∈ S, if 〈y, x〉 ∈ A, then 〈η(x), η(y)〉 ∈ R∗.
So V(S) ⊆ R∗. 2

Lemma 4 Let 〈X ,A,V , η〉 be a vaf. Let d be a φ1-dialogue about a set
S ⊆ X , of the form d = d′.[OPP, 〈y, ∅〉], and let R = valPRO(d). Then
⋃

x∈A+

R
(y)∩argPRO(d){〈η(x), η(y)〉} ⊆ V(S).

Proof: The length of d is greater than |S| + 1 since the last move of d
is by OPP. So, according to Lemma 2, argPRO(d) = S ∪ { }. By defini-
tion, y belong to argPRO(d) and is not the empty argument, so y ∈ S.
Any argument x ∈ argPRO(d) successfully attacked by y w.r.t. R, is not
the empty argument, and belongs to S. So

⋃

x∈A+

R
(y)∩argPRO(d){〈η(x), η(y)〉} ⊆

⋃

x∈S,y∈S s.t. 〈y,x〉∈A{〈η(x), η(y)〉}. 2

Lemma 5 Let 〈X ,A,V , η〉 be a vaf and S ⊆ X . If d is a φ1-dialogue about
S, then valPRO(d) ⊆ V(S).

Proof: Let S = {a1, . . . , an} ⊆ X . Let d be a φ1-dialogue about S. If the
length of d is lower than or equal to n, then all the moves of d have the form
[PRO, 〈ai, ∅〉] where ai is an argument of S (1 ≤ i ≤ n). So valPRO(d) =
∅, and then valPRO(d) ⊆ V(S). Assume that if d is of a length k, with
k > n, then valPRO(d) ⊆ V(S). Let us show that the property is true if
d is of length k + 1. d can have two forms. (1) If d = d′.[OPP, 〈y, ∅〉], then
valPRO(d) = valPRO(d′). Since d′ is of length k, valPRO(d′) ⊆ V(S), and
then valPRO(d) ⊆ V(S). (2) If d = d′.[PRO, 〈 , V 〉], then d′ is of length k,
and so valPRO(d′) ⊆ V(S). According to Lemma 4, V ⊆ V(S). Consequently,
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since valPRO(d′) ∪ V = valPRO(d), we have valPRO(d) ⊆ V(S). 2

Lemma 6 Let 〈X ,A,V , η〉 be a vaf. Let S ⊆ X be a conflict-free set for
at least one audience, such that S 6= ∅. Let d be a φ1-dialogue about S of
length equal to or greater than |S|, the last move of which is played by PRO.
If V(S) 6⊆ (valPRO(d))∗, then there exist y ∈ X and V ⊆ V × V such that
d.[OPP, 〈y, ∅〉].[PRO, 〈 , V 〉] is a φ1-dialogue.

Proof: Let d be a φ1-dialogue about S of length equal to or greater than
|S|, the last move of which is played by PRO. Let R = valPRO(d). According
to Lemma 1, R is an audience. According to Lemma 3, since V(S) 6⊆ R∗, S
is not conflict-free w.r.t. R. Consequently, there exists y ∈ argPRO(d) that
successfully attacks some x ∈ argPRO(d) w.r.t R. In other words, there is
some 〈y, ∅〉 ∈ φ1(d), and d′ = d.[OPP, 〈y, ∅〉] is a φ1-dialogue. Now, let

V =
⋃

x∈A+

R
(y)∩argPRO(d′){〈η(x), η(y)〉}.

Let us show that valPRO(d′) ∪ V is an audience. According to Lemma 5,
valPRO(d′) ⊆ V(S). According to Lemma 4, V ⊆ V(S). So valPRO(d) ∪
V ⊆ V(S). Let T be an audience w.r.t. which S is conflict-free. According to
Lemma 3, V(S) ⊆ T ∗. So valPRO(d′)∪V ⊆ T ∗ and then, (valPRO(d′)∪V )∗ ⊆
T ∗. Consequently, valPRO(d′)∪V is an audience. Hence, 〈 , V 〉 ∈ φ1(d

′), and
then d.[OPP, 〈y, ∅〉].[PRO, 〈 , V 〉] is a φ1-dialogue. 2

Proof: (of Property 2) Assume that S is a conflict-free set for at least one
audience, and that S 6= ∅. Let d1 = [PRO, 〈a1, ∅〉] . . . [PRO, 〈a|S|, ∅〉] be the
sequence of the first |S| moves of a dialogue about S. Let, for i ≥ 2,

di = di−1.[OPP, 〈y, ∅〉].[PRO, 〈 , V 〉]

where, given that Ri−1 = valPRO(di−1) = valPRO(di−1.[OPP, 〈y, ∅〉]):

• y ∈ A−
Ri−1

(argPRO(di−1)) ∩ argPRO(di−1),
• V =

⋃

x∈A+

Ri−1
(y)∩argPRO(di−1.[OPP,〈y,∅〉]){〈η(x), η(y)〉}, and

• valPRO(di) is an audience.

Lemma 6 proves that the sequence is well-defined. Let us show that function
φ1 is strictly decreasing, that is, φ1(di) ⊂ φ1(di−1). Let Ri = valPRO(di).
First, let us show that φ1(di) ⊆ φ1(di−1). Let

• Zi = {z ∈ X | 〈z, ∅〉 ∈ φ1(di)} = A−
Ri

(argPRO(di)) ∩ argPRO(di),
• Zi−1 = {z ∈ X | 〈z, ∅〉 ∈ φ1(di−1)} = A−

Ri−1
(argPRO(di−1))∩argPRO(di−1).

According to Lemma 2, we have Zi = A−
Ri

(S) ∩ S and Zi−1 = A−
Ri−1

(S) ∩ S.

Since valPRO(di−1) ⊆ valPRO(di), A
−
Ri

(S) ⊆ A−
Ri−1

(S). So Zi ⊆ Zi−1 and
hence φ1(di) ⊆ φ1(di−1).
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Second, let us show that there exists some pair in φ1(di−1) that does not
belong to φ1(di). Consider the pair 〈y, ∅〉 which is in φ1(di−1). We have y ∈
A−

Ri−1
(argPRO(di−1))∩argPRO(di−1). According to Lemma 2, y ∈ A−

Ri−1
(S)∩

S. Hence there exists some x ∈ S such that 〈y, x〉 ∈ A and 〈η(x), η(y)〉 /∈
Ri−1

∗. Since Ri = Ri−1∪V , for any x ∈ S such that 〈y, x〉 ∈ A, 〈η(x), η(y)〉 ∈
Ri

∗. Consequently, y /∈ A−
Ri

(S) ∩ S, and hence 〈y, ∅〉 /∈ φ1(di). So φ1(di) ⊂
φ1(di−1).
The empty set is the minimum of function φ1, and for this set, the dialogue
is won by PRO. 2

This instance of the dialogue framework can indeed be used to check if the
set of desired arguments of a dor-partitioned vaf is conflict-free for at least
one audience, and if so, to give such an audience. It is a corollary of the two
previous properties.

Corollary 1 Let 〈X ,A,V , η〉 be a dor-vaf. If d is a φ1-dialogue about Des(X )
won by PRO, then Des(X ) is conflict-free w.r.t. audience valPRO(d). If
Des(X ) 6= ∅ is conflict-free w.r.t. at least one audience, then there exists a
φ1-dialogue about Des(X ) won by PRO.

6.2.4 Making the arguments acceptable

Given a dor-vaf 〈X ,A,V , η〉, let us assume that the set Des(X ) is conflict-
free in the most restricted sense, that is, there are no arguments x and y in
Des(X ) such that x attacks y. For R be an audience we call the set containing
the desired arguments which aims at being a position the ‘position under
development’. The reason why the position under development would not be
admissible w.r.t. R is that some arguments in it would not be acceptable
to it w.r.t. R, i.e. there is (at least one) argument x in the position under
development such that some argument y successfully attacks x w.r.t. R and
no argument z in the position successfully attacks y w.r.t. R.

Let us consider a dialogue d about the conflict-free set Des(X ), based on a
legal-move function where OPP plays moves where the argument is of the
kind of y and the value ordering is empty, and where PRO plays in a way to
make an argument such as x acceptable. The arguments of the position under
development are those played by PRO. The value orderings played by PRO
(i.e. valPRO(d)) must be the audience w.r.t. which the moves are made.

We identify four ways to make an argument x acceptable to the position under
development:

(W1) Add to the position under development an optional argument z which
definitely attacks y and which is not in conflict with any argument of the
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position under development.
(W2) Make the value of x preferred to the value of y, if x is not definitely

attacked by y.
(W3) Add to the position under development an optional argument z which

successfully but not definitely attacks y and which is not in conflict with
any argument of the position under development.

(W4) Add to the position under development an optional argument z which
successfully attacks y, and which might be successfully but not definitely
attacked by the position under development or which might successfully but
not definitely attack the position under development; the addition of value
preferences to the current audience in order for the addition of z to the
position to be correct must form an audience.

The following definition gives the formal translations of (W1) through (W4)
as dialogue moves.

Definition 20 Let 〈X−,A,V , η〉 be a dor-vaf, d be a dialogue about Des(X ),
R = valPRO(d). φ2 : M∗ → 2X

−×2V×V

is defined by:

• if pl(last(d)) = PRO (next move is by OPP), then

φ2(d) =
⋃

y∈(A−

R
(argPRO(d))\A+

R
(argPRO(d)))

{〈y, ∅〉};

• if pl(last(d)) = OPP and arg(last(d)) = y (next move is by PRO), let:

Z1 = (Opt(X ) ∩ A−−
R (y)) \ A±

R(argPRO(d)),

Z2 = argPRO(d) ∩ (A+
R(y) \ A++

R (y)),

Z3 = (Opt(X ) ∩ (A−
R(y) \ A−−

R (y))) \ A±
R(argPRO(d)),

Z4 = {z ∈ Z ′
4 | R ∪ VXY (z) is an audience} with:

Z ′
4 = (Opt(X ) ∩ A−

R(y)) ∩ ((A+
R(argPRO(d)) \ A++

R (argPRO(d)))
∪(A−

R(argPRO(d)) \ A−−
R (argPRO(d)))),

and, given z ∈ Z ′
4:

X(z) = argPRO(d) ∩ (A−
R(z) \ A−−

R (z)),
Y (z) = argPRO(d) ∩ (A+

R(z) \ A++
R (z)),

VXY (z) =























(
⋃

x∈X(z){〈η(z), η(x)〉} ∪
⋃

w∈Y (z){〈η(w), η(z)〉}

∪ {〈η(z), η(y)〉}) if η(z) 6= η(y) and 〈η(z), η(y)〉 /∈ (R)∗,

(
⋃

x∈X(z){〈η(z), η(x)〉} ∪
⋃

w∈Y (z){〈η(w), η(z)〉}) otherwise.

Then:

(W1) if Z1 6= ∅, then φ2(d) =
⋃

z∈Z1
{〈z, ∅〉},

or (W2) if Z2 6= ∅, then φ2(d) =
⋃

z∈Z2
{〈 , {〈η(z), η(y)〉}〉},

or (W3) if Z3 6= ∅, then φ2(d) =
⋃

z∈Z3
{〈z, {〈η(z), η(y)〉}〉},
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or (W4) if Z4 6= ∅, then φ2(d) =
⋃

z∈Z4
{〈z, VXY (z)〉},

or if Z1 ∪ Z2 ∪ Z3 ∪ Z4 = ∅, then φ2(d) = ∅.

Each of these four ways would be tried in turn. In responding to an attack,
the proponent will wish to maintain as much flexibility to respond to further
attacks as possible. The order in which the four ways are tried is thus deter-
mined by the desire to make the least committal move at any stage. Flexibility
is limited in two ways. If the position is extended by including an additional
argument, as in W1, W3 and W4, the potential attackers of the position is
increased since this argument must now also be defended by the position. If
a commitment to a value ordering is made, as in W2, W3 and W4, this must
be subsequently respected, which restricts the scope to make such moves in
future responses. We regard this second line of defence as more committal that
the first. Therefore W1 should be tried first since it imposes no constraints
on the audience, although it does extend the position. W2 should be selected
next because, although it does constrain the audience to adopt a certain value
preference, it does not introduce any additional arguments to the position,
and so does not give rise to any additional attackers. If W3 is resorted to,
both the position is extended and a value ordering commitment is made, but
the argument introduced is compatible with the existing position. W4 should
be the final resort because it extends the position, constrains the audience,
and requires further constraints to be imposed to enable it to cohere with the
existing position.

The dialogue framework instantiated with the legal-move function φ2, is cor-
rect and complete w.r.t. the determination of an audience for which the
conflict-free set of desired arguments is admissible for at least one audience:

Property 3 (Soundness of φ2) Let 〈X−,A,V , η〉 be a dor-vaf such that
Des(X ) is conflict-free. If d is a φ2-dialogue about Des(X ) won by PRO, then
argPRO(d)\{ } is a position such that valPRO(d) is a corresponding audience.

Lemma 7 Let 〈X ,A,V , η〉 be a vaf. Let v1, v2 ∈ V and R an audience. If
〈v1, v2〉 /∈ R∗ and v1 6= v2, then R∪ {〈v2, v1〉} is an audience.

Proof: Let us assume that 〈v1, v2〉 /∈ R∗ and v1 6= v2. If 〈v2, v1〉 ∈ R, then
obviously, R ∪ {〈v2, v1〉} is an audience. If 〈v2, v1〉 /∈ R, let us assume that
R∪{〈v2, v1〉} is not an audience. Therefore, there would exist v ∈ V such that
〈v, v〉 ∈ (R ∪ {〈v2, v1〉})

∗. Since v1 6= v2, we know that 〈v2, v1〉 6= 〈v, v〉. So
〈v, v〉 /∈ R ∪ {〈v2, v1〉}, but 〈v, v〉 ∈ (R ∪ {〈v2, v1〉})

∗. Hence, there would be
in R a set of pairs such that:

{〈v, x1〉, 〈x1, x2〉, . . . , 〈xi−1, xi〉, 〈xi, v2〉, 〈v1, xi+1〉, 〈xi+1, xi+2〉, . . . , 〈xn, v〉}

for some n ≥ 0. Then R∗ would contain 〈v, v2〉, 〈v1, v〉, and 〈v1, v2〉. This is not
possible since we have made the assumption that 〈v1, v2〉 /∈ R∗. Consequently,
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such a sequence does not exist and R∪ {〈v2, v1〉} is an audience. 2

Lemma 8 Given a dor-vaf 〈X−,A,V , η〉 such that Des(X ) 6= ∅ is conflict-
free, and a finite φ2-dialogue d, argPRO(d) is conflict-free w.r.t. the audience
valPRO(d).

Proof: We prove the result by induction on the number of elements of
argPRO(d). If argPRO(d) only contains Des(X ), valPRO(d) = ∅, then argPRO(d)
is conflict-free w.r.t. the audience valPRO(d). Suppose now that the prop-
erty is true for any φ2-dialogue d such that argPRO(d) contains at most
n − 1 elements, for some n > |Des(X )|. Let d be a φ2-dialogue such that
argPRO(d) contains n elements. Suppose first that the last move of d is
played by PRO: d has the form d = d′.[OPP, 〈y, ∅〉].[PRO, 〈z, V 〉], where y ∈
A−

valPRO(d′)(argPRO(d′))\A+
valPRO(d′)(argPRO(d′)) and, given R = valPRO(d′) =

valPRO(d′.[OPP, 〈y, ∅〉]) and d′′ = d′.[OPP, 〈y, ∅〉], either:

• 〈z, V 〉 is played according to W1; in this case, z ∈ (Opt(X ) ∩ A−−
R (y)) \

A±
R(argPRO(d′′)) and V = ∅. Since z /∈ A±

R(argPRO(d′′)), z is conflict-free
w.r.t. R with argPRO(d′′), and R∪ V = R is an audience. Moreover, since
y /∈ A+

R(argPRO(d′)) and y ∈ A++
R (z), z /∈ argPRO(d′). Consequently,

d′ contains strictly less than n elements. Thus, by induction hypothesis,
argPRO(d′) is conflict-free w.r.t. R. Hence, argPRO(d′) ∪ {z} is conflict-
free w.r.t. R∪ V .

• 〈z, V 〉 is played according to W2; in this case, z = and V = 〈η(t), η(y)〉
for some t ∈ argPRO(d′′) ∩ (A+

R(y) \ A++
R (y)). z is obviously conflict-free

with argPRO(d′′) w.r.t. R and R∪V . Moreover, since t ∈ A+
R(y) \A++

R (y),
we have 〈η(y), η(t)〉 /∈ (R)∗ and η(t) 6= η(y). So, by Lemma 7, R ∪ V is
an audience. Assuming that the argument z is different from any argument
played in argPRO(d′) (and especially any ), then d′ contains strictly less
than n elements. Thus, by induction hypothesis, argPRO(d′) is conflict-free
w.r.t. R. Hence, argPRO(d′) ∪ {z} is conflict-free w.r.t. R∪ V .

• 〈z, V 〉 is played according to W3; in this case, z ∈ (Opt(X ) ∩ (A−
R(y) \

A−−
R (y)))\A±

R(argPRO(d′′)), and V = 〈η(z), η(y)〉. Since z /∈ A±
R(argPRO(d′′)),

z is conflict-free w.r.t. R with argPRO(d′′). Moreover, since z ∈ A−
R(y) \

A−−
R (y), 〈η(y), η(z)〉 /∈ (R)∗ and η(y) 6= η(z). So, by Lemma 7, R∪ V is an

audience. Now, since y /∈ A+
R(argPRO(d′)) and y ∈ A+

R(z), z /∈ argPRO(d′).
Consequently, d′ contains strictly less than n elements. Thus, by induction
hypothesis, argPRO(d′) is conflict-free w.r.t. R. Hence, argPRO(d′)∪{z} is
conflict-free w.r.t. R∪ V .

• 〈z, V 〉 is played according to W4; in this case, z ∈ (Opt(X ) ∩ A−
R(y)) ∩

((A+
R(argPRO(d′′))\A++

R (argPRO(d′′)))∪(A−
R(argPRO(d′′))\A−−

R (argPRO(d′′))))
and V = VXY (z) such that R ∪ VXY (z) is an audience. z is in conflict with
argPRO(d′′) w.r.t. R, but not w.r.t. R ∪ V : actually, for any argument
x ∈ argPRO(d′′) that successfully but not definitely attacks z w.r.t. R (i.e.
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x ∈ X(z)), 〈η(z), η(x)〉 ∈ V , and for any argument w ∈ argPRO(d′′) that
is successfully but not definitely attacked by z w.r.t. R (i.e. w ∈ Y (z)),
then 〈η(w), η(z)〉 ∈ V . Now, since y /∈ A+

R(argPRO(d′)) and y ∈ A+
R(z),

z /∈ argPRO(d′). Consequently, d′ contains strictly less than n elements.
Thus, by induction hypothesis, argPRO(d′) is conflict-free w.r.t. R. Hence,
argPRO(d′) ∪ {z} is conflict-free w.r.t. R∪ V .

Since argPRO(d′) ∪ {z} = argPRO(d), and R ∪ V = valPRO(d), argPRO(d)
is conflict-free w.r.t. the audience valPRO(d). Suppose now that the last move
is played by OPP. Then d has the form d = d′.[OPP, 〈y, ∅〉] where d′ is a φ2-
dialogue such that argPRO(d′) = argPRO(d) and valPRO(d′) = valPRO(d).
Therefore, argPRO(d′) contains n elements. We have just proved that in this
case, argPRO(d′) is conflict-free w.r.t. valPRO(d′), hence argPRO(d) is w.r.t.
valPRO(d). 2

Proof: (of Property 3) Let d be a φ2-dialogue about Des(X ) won by PRO.
According to Lemma 8, argPRO(d) is conflict-free w.r.t. audience valPRO(d).
Since d is won by PRO, φ2(d) = ∅, and hence:

A−
valPRO(d)(argPRO(d)) \ A+

valPRO(d)(argPRO(d)) = ∅.

In other words, every argument in argPRO(d) is acceptable to argPRO(d)
w.r.t. valPRO(d). Consequently, argPRO(d) is admissible w.r.t. valPRO(d).
Since d is a φ2-dialogue about Des(X ), Des(X ) ⊆ argPRO(d). Any optional
argument played by PRO in d is used to make acceptable another argument
of argPRO(d) that would not be otherwise acceptable to argPRO(d). No re-
jected argument is played by PRO. The empty argument has no role in the
admissibility of argPRO(d). Consequently, argPRO(d) \ { } is a position, and
valPRO(d) is a corresponding audience. 2

Property 4 (Completeness of φ2) Let 〈X−,A,V , η〉 be a dor-vaf such
that Des(X ) 6= ∅ is conflict-free. If 〈X−,A,V , η〉 has at least one position,
then there exists a φ2-dialogue about Des(X ) won by PRO.

Lemma 9 Let 〈X−,A,V , η〉 be a dor-vaf such that Des(X ) 6= ∅ is conflict-
free. Let d be a φ2-dialogue of length greater than |Des(X )|, the last move of
which is played by PRO. Let S be a minimal position that contains argPRO(d)\
{ }, and R be a minimal corresponding audience of S. If S 6= argPRO(d)\{ }
or (R)∗ 6= (valPRO(d))∗, then there exist y ∈ X , z ∈ X− and V ⊆ V×V such
that the dialogue d′ = d.[OPP, 〈y, ∅〉].[PRO, 〈z, V 〉] is a φ2-dialogue and S is
minimal such that S is a position and contains argPRO(d′) \ { }, and R is a
minimal corresponding audience of S that contains valPRO(d′).

Proof: Since argPRO(d)\{ } 6= S or (valPRO(d))∗ 6= R∗, and since argPRO(d)\
{ } ⊆ S, (valPRO(d))∗ ⊆ R∗, the minimality of S and the corresponding au-
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dience R imply that argPRO(d) is not admissible w.r.t. valPRO(d). From
Lemma 8, we know that argPRO(d) is conflict-free w.r.t. valPRO(d). Thus
A−

valPRO(d)(argPRO(d)) \ A+
valPRO(d)(argPRO(d)) 6= ∅. Hence, φ2(d) 6= ∅. Let

y ∈ A−
valPRO(d)(argPRO(d)) \A+

valPRO(d)(argPRO(d)). Since argPRO(d) \ { } ⊆
S, (valPRO(d))∗ ⊆ R∗, and S admissible w.r.t. R, ∃z ∈ { } ∪ (S ∩ Opt(X ))
and ∃V ⊆ R∗ such that, either:

• y ∈ A++
valPRO(d)(z); in this case, z ∈ Z1, V = ∅.

• V = 〈η(t), η(y)〉 for t ∈ argPRO(d) ∩ (A+
valPRO(d)(y) \ A++

valPRO(d)(y)) = Z2

and z = .
• y ∈ A+

valPRO(d)(z) \ A++
valPRO(d)(z) and V = 〈η(z), η(y)〉; in this case, z ∈ Z3.

• y ∈ A+
valPRO(d)(z) and z is in conflict with argPRO(d) w.r.t. valPRO(d),

but, for any argument x that successfully but not definitely attacks z,
〈η(z), η(x)〉 ∈ V , for any argument w that is successfully but not definitely
attacked by z, 〈η(w), η(z)〉 ∈ V , and if η(z) 6= η(y), 〈η(z), η(y)〉 ∈ V ; in this
case, z ∈ Z4.

Consequently, 〈z, V 〉 ∈ φ2(d.[OPP, 〈y, ∅〉]). Thus, d′ = d.[OPP, 〈y, ∅〉].[PRO, 〈z, V 〉]
is a φ2-dialogue.
We know that argPRO(d′) = argPRO(d) ∪ {z}, argPRO(d′) \ { } ⊆ S, and
(valPRO(d′))∗ = (valPRO(d) ∪ V )∗ ⊆ R∗. There remains to prove that no
set S ′ ⊂ S that contains argPRO(d′) \ { }, and no R′ ⊆ V × V such that
(valPRO(d′))∗ ⊆ (R′)∗ ⊂ R∗, are such that:

• S ′ is admissible w.r.t. R. Suppose that such a set S ′ exists. Then argPRO(d)\
{ } ⊆ argPRO(d′) \ { }. Hence, argPRO(d) \ { } ⊂ S. Since S is minimal
such that S contains argPRO(d) \ { } and S is admissible w.r.t. R, S ′ is not
admissible w.r.t. R.
• R′ is an audience w.r.t. which S is admissible. Suppose that such an R′

exists. Then (valPRO(d))∗ ⊆ (valPRO(d′))∗, and hence (valPRO(d))∗ ⊂ R∗.
Since R is minimal such that R∗ contains (valPRO(d))∗ and R is an audience
w.r.t. which S is admissible, R′ is not an audience. 2

Proof: (of Property 4) Let S be a minimal subset of X such that S is a po-
sition, and R be a minimal corresponding audience of S. Given Des(X ) =
{a1, . . . , an}, let d1 = [PRO, 〈a1, ∅〉] . . . [PRO, 〈an, ∅〉]. Given j > 1, let dj =
dj−1.[OPP, 〈y, ∅〉].[PRO, 〈z, V 〉] if argPRO(dj−1) 6= S and (valPRO(dj−1))

∗ 6=
R∗; 〈y, ∅〉 ∈ φ2(dj−1) and 〈z, V 〉 ∈ φ2(dj−1.[OPP, 〈y, ∅〉]). Lemma 9 proves
that the sequence is well defined, and that, when argPRO(dj) = S and
(valPRO(dj))

∗ = R∗, there exists j ≥ 1 such that dj is a φ2-dialogue about
Des(X ) won by PRO (since S is admissible w.r.t. R, A−

valPRO(dj)
\A+

valPRO(dj)
=

∅). 2
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6.2.5 Development of positions

Let us consider the following legal-move function:

Definition 21 Let 〈X−,A,V , η〉 be a dor-vaf, d be a dialogue about Des(X ).
φ3 : M∗ → 2X

−×2V×V

is defined by:

• if pl(last(d)) = PRO (next move is by OPP), then, if φ1(d) 6= ∅, then
φ3(d) = φ1(d) else φ3(d) = φ2(d);

• if pl(last(d)) = OPP (next move is by PRO), if arg(last(d)) ∈ Des(X ) then
φ3(d) = φ1(d), else φ3(d) = φ2(d).

Property 5 Let 〈X ,A,V , η〉 be a dor-vaf. If d is a φ3-dialogue about Des(X )
won by PRO, then argPRO(d) \ { } is a position such that valPRO(d) is a
corresponding audience. If Des(X ) 6= ∅ is contained in a position, then there
exists a φ3-dialogue about Des(X ) won by PRO.

Proof: Consequence of Corollary 1, Property 3 and Property 4. 2

Example Consider the following vaf 〈X ,A,V , η〉:

a b c
v1 v1 v2

m

n

v1

v3

g h i

j k l
v2v2

v1v2v4

v3

p

o
v5

v5

e f
v2v1v2

q

The arguments are the vertices of the graph and the edges represent the ele-
ments of the attack relation. The set of values is V = {v1, v2, v3, v4, v5}. The
value associated to an argument is indicated just below or just above the ar-
gument. The desired arguments are plain-circled, the optional arguments are
dot-circled, and the rejected arguments are not circled. Let us develop a posi-
tion. We start a φ3-dialogue d about Des(X ). The first moves of d contain the
desired arguments, i.e. µ01

µ02
µ03

µ04
µ05

µ06
µ07

µ08
= [PRO, 〈c, ∅〉][PRO, 〈f, ∅〉]

[PRO, 〈i, ∅〉] [PRO, 〈l, ∅〉][PRO, 〈m, ∅〉][PRO, 〈n, ∅〉][PRO, 〈o, ∅〉][PRO, 〈p, ∅〉].
Then, to ensure the conflict-freeness of Des(X ) w.r.t. one audience:

µ1 = [OPP, 〈m, ∅〉]
µ2 = [PRO, 〈 , {〈v3, v1〉}〉]

Now, to make the arguments of Des(X ) acceptable:

µ3 = [OPP, 〈b, ∅〉]
µ4 = [PRO, 〈a, ∅〉] (W1)
µ5 = [OPP, 〈e, ∅〉]
µ6 = [PRO, 〈 , {〈v2, v1〉}〉] (W2)
µ7 = [OPP, 〈h, ∅〉]
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µ8 = [PRO, 〈g, {〈v4, v2〉}〉] (W3)
µ9 = [OPP, 〈j, ∅〉]
µ10 = [PRO, 〈 , {〈v4, v3〉}〉] (W2)
µ11 = [OPP, 〈k, ∅〉]
µ12 = [PRO, 〈j, {〈v3, v2〉, 〈v3, v5〉}〉] (W4)

d = µ01
. . . µ08

µ1µ2µ3µ4µ5µ6µ7µ8µ9µ10µ11µ12 is a φ3-dialogue won by PRO.
The set argPRO(d) = Des(X ) ∪ {a, g, j} is a position, and valPRO(d) =
{〈v4, v3〉, 〈v3, v2〉, 〈v4, v2〉, 〈v2, v1〉, 〈v3, v1〉, 〈v3, v5〉} is one of its correspond-
ing audiences.

At certain points we may be presented with a choice of arguments to use
with W1-4. For example b may be attacked by a or, if v1 is not preferred to
v2, q. Similarly there are choices when we declare value preferences: in the
example we can either prevent the attack of j on g succeeding, or choose
preferences which lead to i or o defeating j. Such choices may, if badly made,
lead to backtracking. Some heuristics seem possible to guide choices: it is
better to attack an undesired argument with an argument of its own value
where possible, as with a and b above, as this attack will succeed even if the
value order changes. Also, when a value preference is required, a choice which
keeps an optional argument available is better than one which defeats it, as
the argument may be required to defeat a future attack, as in the example
where j is required to defeat k.

7 Related work

7.1 Acceptance

In this subsection our main purpose is to clarify the relation between the con-
cepts of subjective (objective) acceptance and credulous (sceptical) acceptance
as used in standard argument systems. In addition we consider the behaviour
of the algorithm find audience in rather more discursive terms relating it to
the problems of testing a set arguments for admissibility or stability as defined
in Defn 1.

In earlier work, e.g. [16, p. 369], the Argument Systems of Dung [12] have been
considered as vafs in which a single value is associated with all arguments (e.g.
“truth”). We argue that a rather more subtle interpretation – also relevant
to comparisons with the preference-based schema introduced by Amgoud and
Cayrol [1] – is appropriate.

We remarked earlier that Defn. 1 and Defn. 5 describe equivalent structures

35



when the underlying audience is R = ∅, i.e. the universal audience. Thus one
could view the apparent shift from intractability in Dung’s framework, e.g.
as evidenced by the results of [10,14,15], to the polynomial-time procedures
available for vafs, e.g. as described in Fact 6, Theorem 11 as indicative of how
increased awareness of the underlying relationships offering reasons for accep-
tance of arguments within an argument system can assist in resolving issues.
In order to amplify this point, rather than treating the standard systems of
[12] as “vafs in which only a single value is present”, we may consider these
as vafs (in the sense of Defn. 2) but in which one has (initially) no knowledge
regarding the values associated with arguments or the relative orderings of
these values that are held by protagonists. Thus, while one has (it may be
presumed) agreement on the set of values (V) germane to the framework and
on the manner in which these relate to individual arguments – the mapping
η : X → V – in the absence of any indication of value priorities, the case for
some argument, x say, being acceptable can only be “rationalised” in terms of
the assumption that “every attack is successful”. In other words the effective
audience is R = ∅ – the universal audience – and an attack by y on x must,
ceteribus paribus, be deemed to succeed, even when η(y) 6= η(x), since a ratio-
nal disputant has no basis to reject the attack 〈y, x〉 in itself: to promote x its
defenders must subsequently resort to finding attacks on y. Within the vaf

framework, however, defenders of x have a rationale for rejecting the attack
by y when η(y) 6= η(x): by indicating that they subscribe only to audiences
wherein η(x) �R η(y) so that the attack 〈y, x〉 is unsuccessful with respect
to such audiences. In this way further debate concerning x takes place not
in the context of the universal audience but in the context of the audience
R = {〈η(x), η(y)〉}.

In summary, the revelation of successive value orderings, assuming these to
be consistent in that R remains an audience, may lead eventually to R being
a specific audience: from the initial analysis of 〈X ,A,V , η〉, knowledge and
conditions on R have evolved from the state where nothing is assumed –
R = ∅ – to one in which a specific audience has been revealed, yielding exactly
one (rational with respect to this audience) interpretation of which arguments
are acceptable. We observe that in moving from R = ∅, the computational
effect of adding 〈v, v′〉 to R is modelled by removing from the directed graph
stucture 〈X ,A〉 all edges 〈x, y〉 for which η(x) = v′ and η(y) = v, so that (given
the presence of at least two different values in any directed cycle of 〈X ,A〉)
specific audiences will result in some directed acyclic graph structure: 7 that
such forms have a unique, non-empty preferred extension is immediate from
[12, Thm. 30], whose proof easily yields a polynomial-time algorithm for its
construction.

7 It is, of course, possible that the reduction of A induced by an audience R defines
an acyclic graph without R being a specific audience.
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We note that the preference-based approach of [1] can also be treated as a
mechanism to explain progression from an unrestricted argument system to
an acyclic form: the response to an attack by y on x being that the argument
x “is preferred to” the argument y and thence the attack 〈y, x〉 may be elim-
inated from 〈X ,A〉 so that following the declaration of some finite number
of preferences the resulting graph is acyclic. Unlike the interaction between
Defn. 1 and Defn. 5 which we may relate via vafs and the universal audi-
ence, analogues between vaf and preference-based schemes are less clearly
defined: while it is certainly the case that preference-based frameworks can
be interpreted in terms of vafs in which every argument is associated with
a unique value 8 such an approach is unappealing, although it does empha-
sise that in such frameworks, unlike VAFs, the expression of a preference for
one argument over another has no implications for other choices that need
to be made: in scenarios where vaf structures have been used, e.g. the suite
of legal examples presented in [4], typically the number of distinct values is
“small” relative to the number of arguments. A further important distinction
between these two models can be seen in terms of our earlier discussion of
mechanisms for responding to an attack on x by y. Thus, in all three schemes,
i.e. those of [1,3,12] – one option is to counterattack y; in [1,3] there is the
further possibility of “not recognising” the attack 〈y, x〉. In [1] a preference
for x over y is expressed: these, however, are not “explained” and do not have
implications for subsequent preferences that might be indicated. 9 The vaf

approach, however, requires an additional rationale for such a preference to
be given: the attack by y on x fails because the defender of x regards its asso-
ciated value, η(x), as having greater importance than that of its attacker. One
significant consequence of this implicit justification is that its speaker must
act consistently regarding other attacks, e.g. an argument z with η(z) = η(y)
can not be used to counterattack an argument w with η(w) = η(x).

7.2 Hunter’s notion of impact for an audience

Another approach in which computational use of made of the notion of audi-
ence is that of Hunter [18]. Hunter adopts a notion of argument in which an
argument is a pair comprising a set of formulae (the support) and a formula
(the consequent) which can be classically derived from the support. Different

8 In the same way, vafs can be considered as preference-based frameworks where
the argument preference relation is determined via the value orderings. Where the
preference relation supplies a total order, each argument will need to have a distinct
value.
9 That is, other than the requirement that the irreflexive transitive closure of the
preference relation be asymettric, e.g. given three arguments x, y, and z with A =
{〈x, z〉, 〈z, y〉, 〈y, x〉} it cannot be claimed (within the schema of [1]) that “x is
preferred to y and y is preferred to z and z is preferred to x”.
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arguments will have different resonances for different audiences. To calculate
this each agent has a desideratabase comprising a set of propositional formulae
desiderata which the agent wishes to be satisfied, and a weighting which can
be seen as a ranking over the set of possible worlds representing the set of
classical interpretations given by the propositional language of the desiderata.
Now an argument will have resonance for an agent if one or more desider-
ata (or their negations) can be derived from the support, and the weighting
will determine the degree of resonance. Hunter uses this, together with the
propositional cost of an argument (lengthier arguments are more expensive)
to determine the impact of an argument.

Hunter’s notion of arguments differs from ours in that we ascribe values to
arguments. One form of argument that would link arguments to values is that
of [2]. In their approach an argument justifying an action instantiates the
following argument scheme:

• in the current circumstances S
• performing action A
• will result in new circumstances R
• which include goal G
• which promotes value V

Viewed in Hunter’s terms we can see G as a desideratum derivable from the
support comprising the theory which states that R is a consequence of per-
forming A in S. Additionally we now also have V, the reason why the goal is
desired. Introducing V has two important effects:

(1) it can distinguish two different arguments when agents wish to bring
about the same state of affairs for different reasons: for example, one
may wish to restore fox hunting on the economic grounds of protecting
livestock, or simply for the hedonistic pleasure the activity affords.

(2) it can relate two states of affairs in so far as they promote the same value:
for example poverty can be alleviated either by distributing food, or by
distributing money.

It is in this ability to relate desirable states of affairs that values show their
worth. It means that we can work with a smaller number of values than desider-
ata, that we can add a desired state of affairs without need to extend our set
of values, and most importantly that desiring one state of affairs means that,
in order to be consistent, we must also and equally desire other states of af-
fairs. This greatly simplifies the weighting, and additionally means that some
weightings can be seen as inconsistent since they differentially weight states
of affairs relating to the same value. This is essential if arguments attempting
to change audience membership, which are often required for persuasion, are
to be possible. We would therefore argue that the use of values significantly
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enhances Hunter’s representation with respect to practical reasoning. More-
over by replacing his notion of a desideratabase with a set of values and their
ranking we can still make use of his theoretical notion of resonance to assess
the impact of an argument for an audience.

7.3 Concluding Remarks

In this paper we have put forward a framework in which practical reasoning -
reasoning about what should be done in a given situation - may be addressed.
The distinctive features of practical reasoning derive from the acceptability
of such arguments depending on the importance given to the values and pur-
poses advanced if the argument is accepted by the audience to whom it is
addressed. Accordingly we have extended the Argumentation Framework of
Dung by associating arguments with the values advanced by their acceptance.
From this property we can derive preferences between arguments with respect
to particular audiences, and thus account for disagreements between different
audiences. We have explored the decision problems that arise in this extended
framework, presented a number of complexity results relating to these deci-
sion problems, and discussed the relation of the extended framework to the
underlying abstract framework.

Another important question concerns how priorities between values can be
determined by an agent in the course of practical reasoning. We have presented
a dialogue mechanism for determining these priorities, and shown it to be
sound and complete.

Practical reasoning is a crucial activity for any intelligent agent, since it is
through action that intelligence manifests itself. The importance of the topic
merits more investigation than it has so far been given, and we believe that we
have provided a rich framework in which further investigation can be carried
out.

References

[1] L. Amgoud and C. Cayrol. A reasoning model based on the production of
acceptable arguments. Annals of Math. and Artificial Intelligence, 34:197–215,
2002.

[2] K. Atkinson, T. J. M. Bench-Capon, and P. McBurney. Justifying practical
reasoning. In F. Grasso, C. Reed, and G. Carenini, editors, Proc. of the Fourth
Workshop on Computational Models of Natural Argument (CMNA 2004), ECAI
2004, pages 87–90, 2004.

39



[3] T. J. M. Bench-Capon. Agreeing to Differ: Modelling Persuasive Dialogue
Between Parties With Different Values. Informal Logic, 22(3):231–245, 2002.

[4] T. J. M. Bench-Capon. Persuasion in Practical Argument Using Value-based
Argumentation Frameworks. Journal of Logic and Computation, 13(3):429–448,
2003.

[5] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

[6] C. Cayrol, S. Doutre, M.-Ch. Lagasquie-Schiex, and J. Mengin. “Minimal
defence”: a refinement of the preferred semantics for argumentation frameworks.
In Proc. NMR’2002, pages 408–415, 2002.

[7] C. Cayrol, S. Doutre, and J. Mengin. Dialectical proof theories for the
credulous preferred semantics of argumentation frameworks. In Sixth European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU-2001),, pages 668–679. Springer LNAI 2143, Springer-
Verlag, September 2001.

[8] C. Cayrol, S. Doutre, and J. Mengin. On Decision Problems related to
the preferred semantics for argumentation frameworks. Journal of Logic and
Computation, 13(3):377–403, 2003.

[9] S. A. Cook and R. A. Reckhow. The relative complexity of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

[10] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs
and default theories. Theoretical Computer Science, 170:209–244, 1996.

[11] S. Doutre, T. J. M. Bench-Capon, and P. E. Dunne. Explaining preferences
with argument positions. In Proc. IJCAI-05, pages 1560–1561, 2005.

[12] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321–357, 1995.

[13] P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proof procedures for
assumption-based, admissible argumentation. Artificial Intelligence (to appear),
2005.

[14] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems.
Artificial Intelligence, 141:187–203, 2002.

[15] P. E. Dunne and T. J. M. Bench-Capon. Two party immediate response
disputes: properties and efficiency. Artificial Intelligence, 149:221–250, 2003.

[16] P. E. Dunne and T. J. M. Bench-Capon. Complexity in value-based argument
systems. In Proc. 9th JELIA, volume 3229 of LNAI, pages 360–371. Springer-
Verlag, 2004.

40



[17] P. E. Dunne and T. J. M. Bench-Capon. Identifying audience preferences in
legal and social domains. In Proc. DEXA’04, volume 3180 of LNCS, pages
518–527. Springer-Verlag, 2004.

[18] A. Hunter. Towards higher impact argumentation. In Proc. of the 19th
American National Conference on Artificial Intelligence (AAAI’2004), pages
275–280. MIT Press, 2004.

[19] H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation
frameworks. In Proc. ICAIL-99, pages 53–62, 1999.

[20] C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on
Argumentation. Univ. of Notre-Dame Press, 1969.

[21] J. R. Searle. Rationality in Action. MIT Press, 2001.

[22] G. Vreeswijk and H. Prakken. Credulous and sceptical argument games
for preferred semantics. In Proceedings of JELIA’2000, The 7th European
Workshop on Logic for Artificial Intelligence., pages 224–238, Berlin, 2000.
Springer LNAI 1919, Springer Verlag.

[23] D. N. Walton. Argument Schemes for Presumptive Reasoning. Lawrence
Erlbaum Associates, 1996.

41


